Pure-time and separable ODEs Lecture 7b: 2023-02-27

MAT A35 - Winter 2023 - UTSC

Pure-time ODEs: $y^{\prime}=f(x)$

- Can solve via integration: $y=\int f(x) d x$

Ex.

$$
\begin{aligned}
& y^{\prime}=2 x+15 \\
& y=\int(2 x+5) d x
\end{aligned}
$$

$y=x^{2}+5 x+C \leftharpoonup$ general sol

$$
\begin{aligned}
& \text { FEm } \\
& \dot{x}=\sin t-1 \\
& \frac{d x}{d t}=\sin t-1 \\
& x=\int d x=\int(\sin t-1) d t \\
& x=-\cos t-t+C K
\end{aligned}
$$

General vs Particular Solutions

- The general solution has some constants) in it, and covers all possible particular solutions.
- A particular solution assigns specific values to those constants.
E.

$$
\begin{aligned}
& \left.\begin{array}{l}
y^{\prime}=2 x+5 \\
y=x^{2}+5 x+c \quad \text { gen sol. } \\
y=x^{2}+5 x+1 \\
y=x^{2}+5 x+2
\end{array}\right\} \text { partioner sols. }
\end{aligned}
$$

Initial value problem

- When you specify "initial conditions", you choose a single particular solution out of the general solution.

怎。

$$
y=x^{2}+5 x+C \quad I p^{\log \text { in } x}
$$

Initial value (IV): $y(1)=10$ plus in y

$$
\begin{aligned}
\Rightarrow 10 & =1+5+c \\
& \Rightarrow C=4 \\
& \Rightarrow y=x^{2}+5 x+4
\end{aligned}
$$

particular sol.

Try it out

- $\dot{x}=\sin t-1$
- What is the solution to the initial value problem
$x(0)=0$?
$x=-\cos ^{2} t-t+C$
$0=-1+C$
$\Rightarrow C=1$
$x=-\cos t-t+1$
$0=-\cos 0-0+1$
$0=-1-0+1 \quad \checkmark$
A: $x=\sin t$
B: $x=-\cos t-t$
C: $x=-\cos t-t+1$
D: $x=-\cos t-t+C$
E: None of the above

Separating the derivative

- Another way to think about pure-time ODEs:
- We can "split" the derivative $\frac{d y}{d x}=f(x)$ by "multiplying" by $d x$ on both sides: $d y=f(x) d x$, and then integrate on both sides.

Fo.

$$
\begin{aligned}
y^{\prime} & =2 x+5 \\
\frac{d y}{d x} & =2 x+5 \\
d y & =(2 x+5) d x \\
\int d y & =\int(2 x+5) d x
\end{aligned}
$$

$$
y+C_{1}=x^{2}+5 x+C_{2}
$$

$$
y=x^{2}+5 x+c
$$

Separable ODEs

- If we can split a first-order ODE so that one side has all of the dependent variable and the other side has all of the independent variable, then we can integrate on both sides.
Ex $\quad 2 y y^{\prime}+x=0$

$$
\begin{aligned}
& 2 y \frac{d y}{d x}+x=0 \\
& 2 y \frac{d y}{d x}=-x \\
& 2 y \frac{d y}{}=-x d x
\end{aligned}
$$

$$
\underbrace{\text { expert. sol }}_{y_{y}= \pm \sqrt{\sqrt{-\frac{x^{2}}{2}+C}} \begin{array}{l}
\int 2 y d y=\int-x d x \\
y_{\text {impi, }}^{2}=-\frac{x^{2}}{2}+C
\end{array}}
$$

Implicit vs explicit solutions

- An explicit solution to an ODE with independent variable x and dependent variable y is of the form $y=f(x)$.
- An implicit solution to an ODE with independent variable x and dependent variable y is of the form $F(x, y)=0$.
- Sometimes, an implicit solution is the best we can do.
- Example on next slide.

Implicit solution initial value problem

$$
\begin{array}{cc}
\text { Ex. } y^{\prime}=\frac{2 x}{y+e^{5 y}}, & y(2)=0 \\
\frac{d y}{d x}=\frac{2 x}{y+e^{3 y}} & \frac{0}{2}+\frac{1}{5}=4+C \\
\int \begin{array}{lc}
\int\left(y+e^{5 y}\right) d y & =\int 2 x d x
\end{array} & \begin{array}{c}
C=-\frac{19}{5} \\
\frac{y^{2}}{2}+\frac{e^{5 y}}{5}=x^{2}+C
\end{array} \underbrace{y^{2}+\frac{e^{5 y}}{5}=x^{z}-\frac{19}{5}}_{\text {impli,2 gen so! }}
\end{array}
$$

Try it out: is the following separable? $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d y}{d x}=y^{2} x \sin x^{2} \\
& \frac{d y}{y^{2}}=x \sin x^{2} d x
\end{aligned}
$$

- $y^{\prime}-y^{2} x \sin x^{2}=0$ YES
- $\dot{x} x^{2}+t^{2} e^{t}=4 \quad$ YES $\quad x^{2} \frac{d x}{d t}=4-t^{2} e^{t}$

$$
\begin{aligned}
& \frac{d x}{d t}=4-t \\
& x^{2} d x=\left(4-t^{2} e^{t}\right) d t
\end{aligned}
$$

$\cdot \dot{x} t^{2}+x^{2} e^{x}=4 \quad$ YES

$$
\begin{aligned}
& t^{2} \cdot \frac{d x}{d t}+x^{2} e^{x}=4 \\
& \frac{t^{2} d x}{d t}=4-x^{2} e^{x}
\end{aligned}
$$

- $y^{\prime}=x y \quad \frac{d y}{d x}=x y \quad \frac{d y}{d x}=x y \quad \frac{d x}{4-x^{2} e^{x}}=\frac{d t}{t^{2}}$
$\left.\ln |y|=\frac{1}{2} x^{2} \right\rvert\, c$
- $y^{\prime}=\sin (x y) \quad$ NO

A: Separable B: Not separable C: Cannot tell D: ???
E: None

Example: $y^{\prime}=x y$, where $y(1)=1$

$$
\begin{aligned}
\frac{d y}{d x} & =x y \\
\int \frac{d y}{y} & =\int x d x \\
\ln |y| & =\frac{1}{2} x^{2}+c
\end{aligned}
$$

SUP

$$
\begin{gathered}
\ln |1|=\frac{1}{2}+C \\
0=\frac{1}{2}+C \\
C=-\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \ln |y|=\frac{1}{2} x^{2}-\frac{1}{2} \\
& y=e^{\left(\frac{1}{2} x^{2}-\frac{1}{2}\right)}
\end{aligned}
$$

Try it out: $y^{\prime}=3 x^{2} e^{2 y}$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2} e^{2 y} \\
& \frac{d y}{e^{2}}=3 x^{2} d x \\
& \int e^{-2 y} d y=\int 3 x^{2} d x \\
& -\frac{1}{2} e^{-2 y}=x^{3}+c \\
& e^{-2 y}=-2 x^{3}+c \\
& -2 y=\ln \left|-2 x^{3}+c\right| \\
& \left.y=-\frac{1}{2} \ln \left|-2 x^{3}\right| c \right\rvert\,
\end{aligned}
$$

