Direction fields, autonomous ODEs, and the phase line Lecture 7d: 2023-03-02

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

1st-order ODEs and slopes of solutions

- We can write a 1st-order ODE as y' = f(x, y)
- Recall that the derivative can be thought of as the slope of a solution.

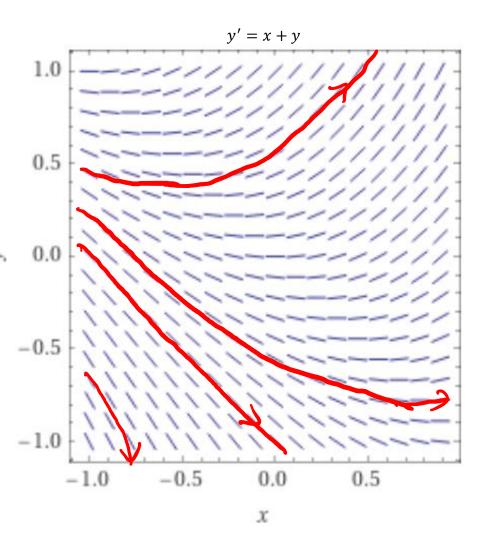
Ex.
$$y' = x + y$$

A sol possing through $y(1)=1$ has alope $y' = 2$

At $p+(0,1)$, $slope = 1$

Direction field

- A direction field graphs out the slopes of all solutions going through a point.
- We can visualize different solutions by drawing trajectory curves that are always tangent to the direction field.



https://www.wolframalpha.com/input/?i=slope+field+of+y%27%3Dx%2By

Autonomous ODEs

- Recall that an autonomous ODE is one that does not have an explicit dependence on the independent variable (e.g. time).
- A first-order autonomous ODE can be rewritten in the form:

$$y' = f(y)$$
Ex. $y'' + y' + y' = 0$ - 2nd order antonomore

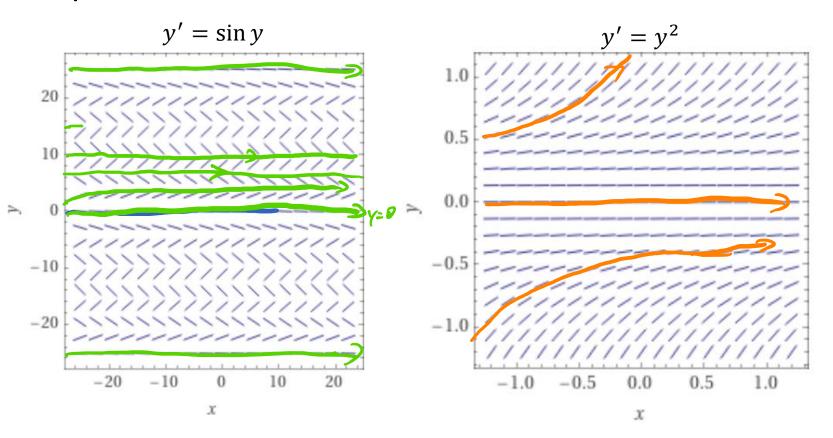
$$(y')^2 - sin y - 1 = 0$$
 - 1st order antonomore

$$(y')^2 = sin y + 1$$

$$y' = \sqrt{sin y + 1}$$
studied form

Direction fields of autonomous ODEs

• Notice that if y' = f(y), then the slope has no x-dependence.



Equilibrium values

- An equilibrium value of the autonomous ODE y' = f(y) is a constant solution y = c.
- We can solve for equilibrium values by setting y'=0.

Ex.
$$y'=y^2=0$$

$$= y=0 \text{ is the only eq. unke}$$

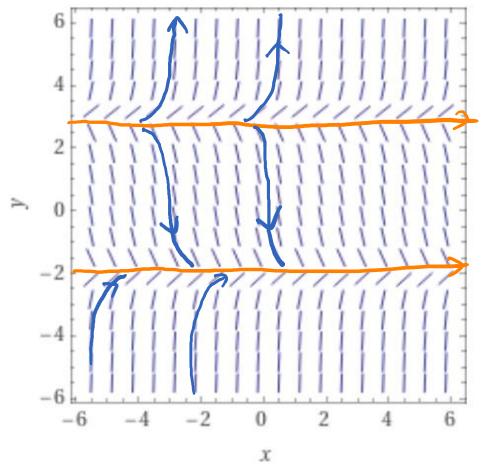
$$= y'=\sin y = 0$$

$$= y=kT \text{ for any integer } k$$
are all equilibria.

Try it out: find the equilibrium values

$$\bullet y' = y^2 - y - 6$$

$$y^{2}-y-6=0$$
 $(y-3)(y+2)=0$
 $y=3,-2$



unstable

asymptically stable

A: -2

B: 3

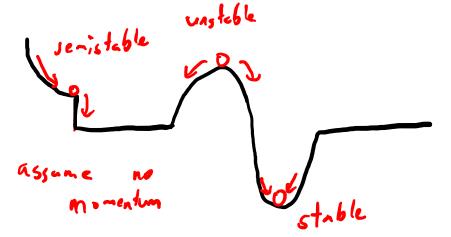
C: All of the above

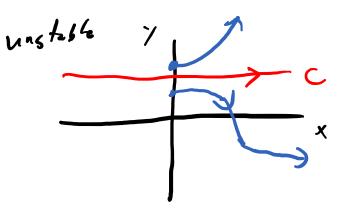
D: ???

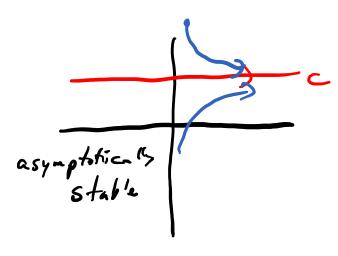
E: None of the above

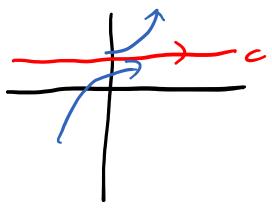
Stability of equilibrium values

- Consider an equilibrium value c of y' = f(y), and an initial value $y(0) = y_0$, where $y_0 \approx c$, but $y_0 \neq c$. Then c is
 - Unstable if y diverges from c as time $x \to \infty$
 - Asymptotically stable if $y(x) \rightarrow c$ as $x \rightarrow \infty$
 - Semi-stable if as $x \to \infty$, y(x) goes to c on one side, but diverges on the other side.









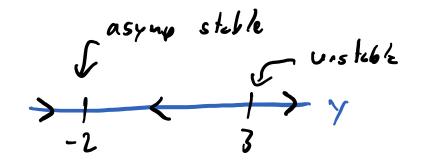
Determining stability using sign of y'

- y' = 0 at equilibrium.
- y' > 0 implies y(x) gets bigger
- y' < 0 implies y(x) gets smaller

$$y' < 0$$
 implies $y(x)$ gets smaller

 $y' = (y^{-1})(y+2)$

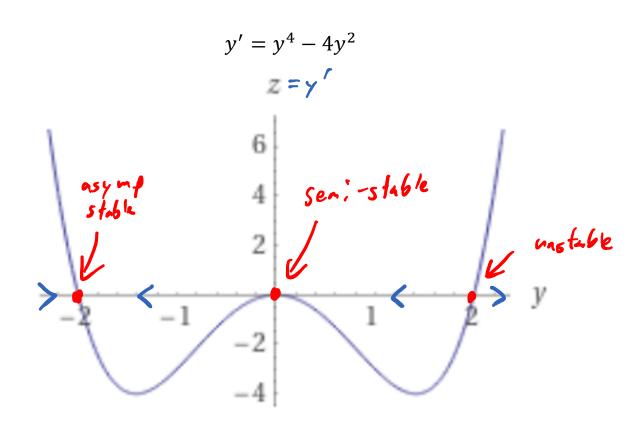
If $y = -2$, $y' = (-)(-) = (+) > 0$
 $y' = (-)(+) = (-) < 0$
 $y' = (-)(+) = (-) < 0$



 $v' = v^2 - v - 6$

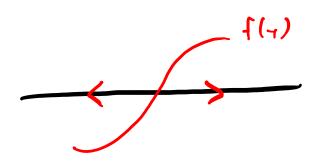
Phase line

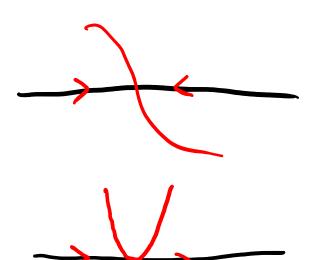
• Draw arrows along the y-axis depending on if z = f(y) = y' is positive or negative.

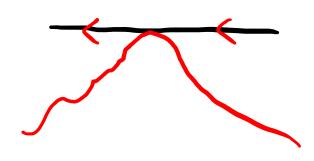


Phase line stability of y' = f(y)

- If z = f(y) crosses the yaxis at f(c) = 0 going upward, then c is unstable.
- If z = f(y) crosses the yaxis at f(c) = 0 going downward, then c is asymptotically stable.
- If z = f(y) touches the yaxis at f(c) = 0, but remains on the same side of the y-axis, then c is semi-stable.







Try it out

$$y^{5} = y^{5} - 3y^{4} - 4y^{3} + 12y^{2}$$

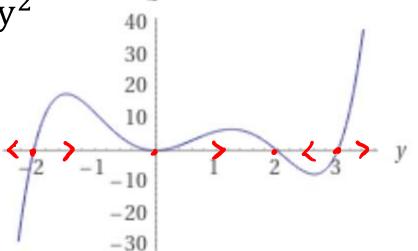
 Classify the stability of the following equilibria:

•
$$y = -2$$

•
$$y = 0$$

•
$$y = 2$$
 state

•
$$y = 3$$
 unstable



A: Asymptotically stable

B: Unstable

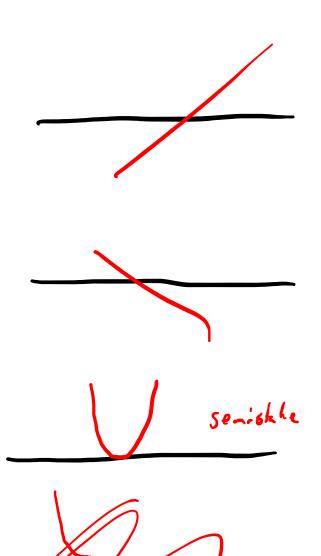
C: Semi-stable

D: ???

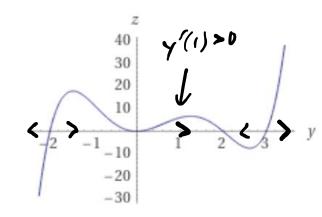
E: None of the above

Derivative test for stability

- Let y' = f(y) have an equilibrium at f(c) = 0.
- If $\frac{df}{dy}(c) > 0$, then y = c is unstable.
- If $\frac{df}{dy}(c) < 0$, then y = c is asymptotically stable.
- If $\frac{df}{dy}(c) = 0$ and c is a local extremum (max or min) of f(y), then y = c is semistable



• $y' = y^5 - 3y^4 - 4y^3 + 12y^2$ has equilibria -2, 0, 2, 3 $f(y) = y^5 - 3y^4 - 4y^3 + 12y^2$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 + 24y$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^2 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 5y^4 - 12y^3 - 12y^3 - 12y^3 - 24y^4 + 24y^4$ $\frac{1f}{dy} = 10y^4 - 12y^4 - 12y^4 - 12y^4 - 12y^4 + 12y^4$ $\frac{1f}{dy} = 10y^4 - 12y^4 - 12y^$



Try it out

• Fat crystallization: Let y(x) be the proportion of crystallizable milk fat in a sample after x hours, satisfying

$$y' = 8(y^5 - y)$$

 If you start with half of the fat as crystallizable, how much fat is crystallizable as time goes to ∞?

https://commons.wikimedia.org/ wiki/File:Glass_of_milk.jpg

A: All of the fat

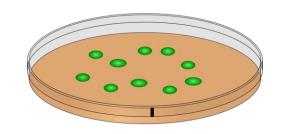
B: Half of the fat

C: None of the fat

D: ???

E: None of the above

Logistic Growth Model



- Previously, we saw exponential growth y' = ky, $y(0) = y_0$, which had a solution $y(x) = y_0 e^{kx}$.
- In practice, this is unrealistic. For example, bacteria in a petri dish will initially grow almost exponentially, but then they'll use up all the available media.
- A better model is the logistic model, $y' = ky\left(1 \frac{y}{L}\right)$, where the parameter L is the carrying capacity of the environment, and k > 0 is still the growth rate.

Stability of equilibria of logistic model

•
$$y' = ky\left(1 - \frac{y}{L}\right)$$

Silve for equilibria.
 $y'=0 = ky\left(1 - \frac{y}{L}\right)$

$$y = 0$$
 or $1 - \frac{y}{L} = 0$
 $\Rightarrow y = L$



Logistic model behavior

$$\bullet y' = ky \left(1 - \frac{y}{L} \right)$$

- y < 0 is not physical, since we cannot have negative bacteria.
- When 0 < y < L, y' > 0, so the number of bacteria increase, up to L.
- When y > L, y' < 0, so the number of bacteria decrease, down to L.
- On large time-scales, we therefore have L bacteria.

