Compartmental Models

 Lecture 8a: 2023-03-06MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Mixing problem (Bittinger, pg 559, ex. 7)

- A tank contains 100 gallons of brine whose concentration is 2.5 lb of salt / gallon.
- Brine containing 2 lb of salt / gallon runs into the tank at a rate of 5 gallons / min
- The brine in the tank runs out at the same rate of 5 gallons / min.
- How does the amount of salt $S(t)$ in the tank change over time?

Rate of change in amount of salt

$$
\begin{aligned}
& \text { Solving for } \dot{S}=10-\frac{S}{20} \quad \dot{s}=\frac{d 5}{d t} \\
& \dot{S}+\underbrace{\frac{1}{20}}_{(G)} S=\underbrace{10}_{v(x)} \quad \text { linear } \text { lat porter } O D E \\
& d S+d\left[\frac{1}{20}\right] s=10 d t \\
& I(t)=e^{\int \frac{1}{v_{0}} \sqrt{t}}=e^{\frac{t}{20}} \quad \text { (integralmg factor) } \\
& \int \underbrace{\int \frac{t}{e_{0}}\left[d s+d t\left[\frac{1}{20} s\right]\right]}=\int 10 e^{\frac{t}{2} d t} \\
& \left(e^{-t / 2}\right) \cdot\left[e^{t / 20} \cdot \boldsymbol{S}\right]=\left[200 e^{\frac{t}{20}}+\mathbf{c}\right] \cdot\left(e^{-t / 20}\right) \\
& S=200+C_{e}^{-\frac{t}{20}} \leftarrow \text { general sol }
\end{aligned}
$$

Initial value problem
S is in lbs t is m min $\dot{s}=\frac{d s}{d t}$ is in $16 / \mathrm{min}$

- $S=200+C e^{-\frac{t}{20}}$ and $S(0)=250$

$$
\begin{gathered}
250=S(0)=200+c \\
C=50 \\
S=200+50 e^{-t / 20}
\end{gathered}
$$

Amount of salt in tank on long time-scales?
A: 50 lb
B: $50 \mathrm{lb} / \mathrm{min}$
C: 200 lb
D: $200 \mathrm{lb} / \mathrm{min}$
E: None of the above

Compartmental diagram: $S^{\prime}=10-\frac{S}{10}$

Compartmental models

- Boxes represent variables
- Arrows give rates of change.
- An arrow pointing to a box increases that variable

- An arrow pointing away decreases that variable

$$
\begin{aligned}
& S^{\prime}=10-6-0.1 S+0.2 I \\
& P^{\prime}=0.1 S-0.2 I
\end{aligned}
$$

Application: SIR epidemic model

- Consider a simple epidemic model with three classes of people:
- Susceptible individuals $S(t)$
- Infected individuals $I(t)$
- Removed individuals $R(t)$
- Assume that:
- Infection rate is proportional to the number of infected individuals multiplied by the proportion of susceptible individuals in the population $N=S+I+R$.
- Recovery rate is proportional to the number of infected \mathcal{Y} individuals

- Recovered individuals are immune

Try it out: $A^{\prime}+2 A=4$

$$
A^{\prime}=-2 A+4
$$

- Does the following compartmentalized model correspond to the equation above?

$$
\begin{aligned}
& \xrightarrow{2 A} \stackrel{4}{\leftrightarrows} \text { ND } \quad \stackrel{2 A}{\rightleftarrows} \stackrel{4}{\leftrightarrows}\left\{\begin{array}{l}
A^{\prime}=-2 A+4 \\
B^{\prime}=-4
\end{array}\right. \\
& \stackrel{2 A}{\leftarrow} \leftarrow^{4} \text { YES } \stackrel{A}{\downarrow} A_{\downarrow^{2}}^{\leftarrow_{Y E S}^{2}}
\end{aligned}
$$

Notational aside

- Bittinger, et al textbook introduces two different types of arrows
- Relative rates: solid arrows are proportional to the variables
- Constant/time-dependent rates: dotted arrows are either constant or depend only on time

vS,

above notation
text60:
- MATA35 will use the left-hand notation of using solid lines everywhere and including all relevant variables unless explicitly specified otherwise.

Try it out

- Find the general solution for the following onecompartment model:

$$
\begin{array}{ll}
\downarrow^{2} & \dot{p}=2-0.2=1.8 \\
\frac{p}{\downarrow} & p=1.8 t+c
\end{array} \left\lvert\, \begin{array}{cc}
\downarrow^{2} & \dot{p}=2-0.2 P \\
p & \dot{p}+0.2 \rho=2 \\
\downarrow_{0.2 P} & I(t)=e^{0.2 t} \\
P e^{0.2 t}=10 e^{0.2 t}+c \\
P=10+C e^{-0.2 t}
\end{array}\right.
$$

A: $P(t)=1.8 t+C$
B: $P(t)=2.2 t+C$
C: $P(t)=10+C e^{-0.2 t}$
D: ???
E : None of the above

Lake pollution (Bittinger, pg 557, ex. 5) unpolluted

- A mussel is placed into lake water polluted by polychlorinated biphenyl (PBs).
- Let $Q(t)$ be the concentration of PCB in the mussel in micrograms per gram of tissue.
- The mussel absorbs PCB at 12 micrograms per gram of tissue each day.
- The mussel eliminates PCB at a rate of $0.18 Q$ micrograms per gram of tissue each day.

Simple multi-compartmental models

At time ∞,

$$
x=10
$$

$$
y=5
$$

Asyap stable eq for y

At tame $\infty, \dot{y}=0.1 x-0.2 y=1-0.2 y=0$

$$
\Rightarrow \quad y>5
$$

Solving explicitly

Try it out

- What is the behavior of the basic SIR epidemic model with no reinfection at time infinity, if $S(0)>0, I(0)>0$, and $R(0)>0$?

R

$$
\begin{gathered}
R=N-S-I \\
\lim _{t \rightarrow \infty} R(f)=N-0-0 \\
=N
\end{gathered}
$$

$$
\begin{aligned}
& \dot{S}=\frac{-\beta S I}{N} \\
& \lim _{t \rightarrow \infty} S(t)=0
\end{aligned}
$$

$$
\dot{I}=\underbrace{\frac{B S I}{N}}_{\sim}-r^{I}
$$

$$
\lim _{t \rightarrow \infty} I(t)=0
$$

A: Everyone is susceptible
B: Everyone is infected
C: Everyone is removed
D: Some mix of the above
E: None of the above

Concluding remarks

- Compartmental models are a graphical way of representing the rate of change of variables.
- Linear one-compartment models we can solve using the techniques for linear first-order ODEs
- Explicitly solving using integrating factors
- Stability analysis using phase lines
- Multi-compartment models that can be broken down into a series of one-compartment models are also solvable for the same reason.
- More complicated multi-compartment models will require knowing how to solve systems of ODEs. (Future lecture)

