Substitution Method Lecture 8b: 2023-03-06

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

Recall substitution method for integrals

- Step 1: Guess an appropriate u
- Step 2: Compute du, dx, and x
- Step 3: Substitute in to get rid of all the x's
- Step 4: Integrate as a function of u
- Step 5: Convert back to x's

Substitution method for ODEs

- Goal: convert ODE to a form we know how to solve.
- Strategy: Guess an appropriate u = f(x, y) to simplify the ODE.
- Caveat: Sometimes need multiple substitutions.

A much more complicated example

•
$$(2x + y + 1)dx + (x - y - 4)dy = 0$$

- Multistep derivation:
 - Substitute $\begin{cases} u = 2x + y + 1 \\ v = x y 4 \end{cases}$
 - Substitute $w = \frac{u}{v}$
 - We now have a separable equation.
 - Solve via integrating both pieces.
 - Undo all of the substitutions

Substitute $\begin{cases} u = 2x + y + 1 \\ v = x - y - 4 \end{cases}$ • (2x + y + 1)dx + (x - y - 4)dy = 0

Substitute $w = \frac{u}{v}$

Separation of variables

Substituting everything back in Substitute $w = \frac{u}{v}$, and Substitute $\begin{cases} u = 2x + y + 1 \\ v = x - y - 4 \end{cases}$

Try it out

• (x + 2y + 5)dx + (2x + 4y - 3)dy = 0.Let u = x + 2y + 5

A:
$$(x + 2y + 5)y^2 = C$$

B: $\frac{1}{2}(x + 2y + 5)^2 - 13y = C$
C: $(x + 2y + 5) - 13y^2 = C$
D: All of the above
E: None of the above

Common Substitution Guesses

• P(x,y)dx + Q(x,y)dy = 0, where P(tx,ty) = $t^n P(x, y)$ and $Q(tx, ty) = t^n Q(x, y)$ for some integer n.

- Let u = x/y. Will get separable ODE.
- Special case: $(a_1x + b_1y)dx + (a_2x + b_2y)dy = 0$
- $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0$
 - If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are intersecting lines, then let both $\begin{cases} u = a_1 x + b_1 y + c_1 \\ v = a_2 x + b_2 y + c_2 \end{cases}$. Will get case above.
 - If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel lines, then let $u = a_1x + b_1y + c_1$ or let $u = a_2x + b_2y + c_2$. Will get separable ODE.
- Bernoulli ODE: $\frac{dy}{dx} + P(x)y = Q(x)y^n$ Multiply by $(1-n)y^{-n}$. Then Let $u = y^{1-n}$. $a_1 \times b_1 + b_1 + c_1 = 0$ $\forall \frac{a_1 \times b_1}{b_1} \frac{c_1}{b_1}$

Will get linear first-order ODE.

Guess the substitution

- (x + y 1)dx + (x + y + 1)dy = 0
- A: u = x + y 1B: v = x + y + 1C: Both A & B D: One of A or B E: u = x/y

•
$$(x + y - 1)dx + (2x - y)dy = 0$$

A:
$$u = x + y - 1$$

B: $v = 2x - y$
C: Both A & B
D: One of A or B
E: $u = x/y$

•
$$\exp\left(\frac{x}{y}\right)dx + \tan\left(\frac{x}{y}\right)dy = 0$$

A:
$$u = \exp\left(\frac{x}{y}\right)$$

B: $v = \tan\left(\frac{x}{y}\right)$
C: Both A & B
D: One of A or B
E: $u = x/y$

Application: friction and drag

Caveats

- Like Integrating Factors, guessing the right substitution is hard outside of a few known special cases, like the ones in the previous slide.
- On Quiz 4, I will give you the appropriate substitution or provide you with the information on the common substitutions slide.
- Sometimes, may even just ask you to guess an appropriate series of substitutions to convert the ODE to a different form. (e.g. to a separable ODE)