Substitution Method Lecture 8b: 2023-03-06

MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Recall substitution method for

 integrals- Step 1: Guess an appropriate u
- Step 2: Compute $d u, d x$, and x
- Step 3: Substitute in to get rid of all the x 's
- Step 4: Integrate as a function of u
- Step 5: Convert back to x 's

Substitution method for ODEs

- Goal: convert ODE to a form we know how to solve.
- Strategy: Guess an appropriate $u=f(x, y)$ to simplify the ODE.
- Caveat: Sometimes need multiple substitutions.

A much more complicated example

- $(2 x+y+1) d x+(x-y-4) d y=0$
- Multistep derivation:
- Substitute $\left\{\begin{array}{c}u=2 x+y+1 \\ v=x-y-4\end{array}\right.$
- Substitute $w=\frac{u}{v}$
- We now have a separable equation.
- Solve via integrating both pieces.
- Undo all of the substitutions

Substitute $\left\{\begin{array}{c}u=2 x+y+1 \\ v=x-y-4\end{array}\right.$

$\cdot(2 x+y+1) d x+(x-y-4) d y=0$

Substitute $w=\underline{u}$
 v

Separation of variables

Substituting everything back in

Substitute $w=\frac{u}{v^{\prime}}$, and Substitute $\left\{\begin{array}{c}u=2 x+y+1 \\ v=x-y-4\end{array}\right.$

Try it out

$\cdot(x+2 y+5) d x+(2 x+4 y-3) d y=0$. Let $u=x+2 y+5$

$$
\begin{aligned}
& \text { A: }(x+2 y+5) y^{2}=C \\
& \mathrm{~B}: \frac{1}{2}(x+2 y+5)^{2}-13 y=C \\
& \mathrm{C}:(x+2 y+5)-13 \mathrm{y}^{2}=\mathrm{C} \\
& \mathrm{D}: \text { All of the above } \\
& \mathrm{E}: \text { None of the above }
\end{aligned}
$$

Common Substitution Guesses

- $P(x, y) d x+Q(x, y) d y=0$, where $P(t x, t y)=$ $t^{n} P(x, y)$ and $Q(t x, t y)=t^{n} Q(x, y)$ for some integer n.
- Let $u=x / y$. Will get separable ODE.
- Special case: $\left(a_{1} x+b_{1} y\right) d x+\left(a_{2} x+b_{2} y\right) d y=0$
- $\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right) d y=0$
- If $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are intersecting lines, then let both $\left\{\begin{array}{l}u=a_{1} x+b_{1} y+c_{1} \\ v=a_{2} x+b_{2} y+c_{2}\end{array}\right.$. Will get case above.
- If $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are parallel lines, then let $u=a_{1} x+b_{1} y+c_{1}$ or let $u=a_{2} x+b_{2} y+c_{2}$. Will get separable ODE.
- Bernoulli ODE: $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& y=\frac{-a_{1} x}{b_{1}}-\frac{c_{1}}{b_{1}}
\end{aligned}
$$

- Multiply by $(1-n) y^{-n}$. Then Let $u=y^{1-n}$.
- Will get linear first-order ODE.

Guess the substitution

$\cdot(x+y-1) d x+(x+y+1) d y=0$

$$
\begin{aligned}
& \mathrm{A}: u=x+y-1 \\
& \mathrm{~B}: v=x+y+1 \\
& \mathrm{C}: \text { Both A \& B } \\
& \mathrm{D}: \text { One of A or B } \\
& \mathrm{E}: u=x / y
\end{aligned}
$$

- $(x+y-1) d x+(2 x-y) d y=0$

A: $u=x+y-1$
B: $v=2 x-y$
C: Both A \& B
D: One of A or B
$\mathrm{E}: u=x / y$

- $\exp \left(\frac{x}{y}\right) d x+\tan \left(\frac{x}{y}\right) d y=0$
$\mathrm{A}: u=\exp \left(\frac{x}{y}\right)$
B: $v=\tan \left(\frac{x}{y}\right)$
C: Both A \& B
D: One of A or B
$\mathrm{E}: u=x / y$

Application: friction and drag

Caveats

- Like Integrating Factors, guessing the right substitution is hard outside of a few known special cases, like the ones in the previous slide.
- On Quiz 4, I will give you the appropriate substitution or provide you with the information on the common substitutions slide.
- Sometimes, may even just ask you to guess an appropriate series of substitutions to convert the ODE to a different form. (e.g. to a separable ODE)

