Complex numbers and rotations

Lecture 9a: 2023-03-13

MAT A35 - Winter 2023 - UTSC
Prof. Yun William Yu

No algebraic closure in real numbers \mathbb{R}

- Problem: no real solution to the equation $x^{2}+1=0$.
- Problem: no real solution to the equation $x^{2}+2 x+2=0$
- Algebraic closure of the reals means that every polynomial $P(x)$ has to have a real root $P(z)=0$, but this is not true.

Imagining up a new number

- Let's start by defining a solution to $x^{2}+1=$ 0 :

$$
\begin{aligned}
& x^{2}+1=0 \\
& x^{2}=-1 \\
& x= \pm \sqrt{-1}
\end{aligned}
$$

- Let $i=\sqrt{-1}$.

Complex numbers

- Since i is a number, we want to be able to add, subtract, multiply, and divide with it, like with real numbers.
- We call all of these new "numbers" the complex numbers \mathbb{C}.

Canonical form of complex numbers

 - It turns out that every complex number $z \in \mathbb{C}$ can be written simply as $z=a+b i$, where $a, b \in \mathbb{R}$, and $i=\sqrt{-1}$.
Algebraic closure of complex numbers

$\cdot z \in \mathbb{C}$ if $z=a+b i$, where $a, b \in \mathbb{R}$, and $i=\sqrt{-1}$.

- It turns out that \mathbb{C} is algebraically closed, which means that any non-constant polynomial has a root in \mathbb{C}.

Complex plane

-We can use tools from linear algebra to understand $a+b i$.

- Since $a, b \in \mathbb{R}$, we can think of the point $\left[\begin{array}{l}a \\ b\end{array}\right] \in \mathbb{R}^{2}$ as a way to represent $a+b i$.

What does this have to do with

 biology?- When talking about population sizes "negative" population sizes were considered meaningless because we can't have negative numbers of animals.
- What does it mean to have "imaginary" numbers of bunnies or birds?

Recall: Matrices are transformations of vectors

- Scaling operators: $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$

- Stretching/squashing: $\left[\begin{array}{cc}0.5 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}0.5 x \\ 2 y\end{array}\right]$

- Rotations: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y\end{array}\right]=\left[\begin{array}{c}-y \\ x\end{array}\right]$

Multiplication by $i=$ rotation by 90°

Multiplication by $2 i=$ scaling by $2+$ rotation by 90°

What about other rotation angles?

- We want something to multiply the basis vector 1 by that leaves you with something of length 1 that has the correct angle.
- But multiplying by 1 is the identity.

Rotation by $\theta=$ multiply by

$\cos \theta+i \sin \theta$

A: $\frac{1}{2}+\frac{\sqrt{3}}{2} i$
B: $\frac{1}{2}-\frac{\sqrt{3}}{2} i$
C: $1+\sqrt{2} i$
D: $1-\sqrt{2} i$
E : None of the above

Multiplication by z $=a+b i$

- Notice that we can think of all complex multiplications as a rotation and then a scaling.
- The length of the scaling is the modulus

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

- The angle of the rotation is the argument $\theta=\operatorname{Arg}(z)$, where
$\frac{a+b i}{|z|}=\cos \theta+i \sin \theta$

Try it out

- $|-1+i|=$
- $\operatorname{Arg}(-1+i)=$
- $\left|(-1+i)^{2}\right|=$
- $\operatorname{Arg}\left((-1+i)^{2}\right)=$

A: $\frac{3}{2} \pi$
B: $\frac{3}{4} \pi$
C: $\sqrt{2}$
D: 2
E: None of the above

Euler's Formula: $e^{i \theta}=\cos \theta+i \sin \theta$

- Real powers define exponential growth.
- $e^{0}=1$
- $e^{1}=e \approx 2.718$
- $e^{2} \approx 7.389$
- Imaginary powers encode rotation around the complex origin.
- $e^{0 i}=1$
- $e^{\frac{\pi}{4} i}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$
- $e^{\frac{\pi}{2} i}=i$
- $e^{\pi i}=-1$
https://en.wikipedia.org/wiki/Euler\'s_formula\# /media/File:Euler's_formula.svg

Polar form

- A complex number $z=a+b i$ can be rewritten as a scalar $|z|$ and an angle $\theta: z=|z|(\cos \theta+i \sin \theta)$, where $|z|=a^{2}+b^{2}$ and
$\theta=\operatorname{Arg}(z)=\left\{\begin{array}{c}\arctan \frac{b}{a}, \text { if } a>0 \\ \arctan \frac{b}{a}+\pi, \text { if } a<0\end{array}\right.$.
- Complex exponential $e^{z}=e^{a+b i}=e^{a} e^{b i}$

$$
=e^{a}(\cos b+i \sin b)
$$

- Thus, $\left|e^{z}\right|=e^{a}$ and $\operatorname{Arg}\left(e^{z}\right)=b$
- So, multiplying by a complex exponential scales by e^{a} and rotates by an angle b in radians.

Example

A: 0
B: 1
C: e
D: e^{2}
E: None of the above

