Constant coefficient homogeneous higherorder linear ODEs Lecture 9b: 2023-03-13
 MAT A35 - Winter 2023 - UTSC Prof. Yun William Yu

Recall: linear higher-order ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
Ex. $\quad y^{\prime \prime}+y^{\prime}+y=5$

$$
y^{\prime \prime \prime}+\sin (x) y^{\prime}+x^{2} y=5 x
$$

$$
\begin{aligned}
& y^{\prime \prime \prime}+\sin (x) y^{\prime}+x^{2} y=5 y \\
& \Rightarrow y^{\prime \prime \prime}+\sin (y) y^{\prime}+\left(x^{2}-5\right) y=0
\end{aligned}
$$

A: Linear
B: Nonlinear
C: Both
D: ???
E: None of the above
(In)homogeneous linear ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
- If $q(x)=0$, then homogeneous.
- Otherwise, it is inhomogeneous.
- Note, if nonlinear, then neither definition applies.

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}+y=5 \quad \text { inhomogeneous } \\
& y^{\prime \prime}+y^{\prime}+y=0 \quad \text { homogenenes } \\
& y^{\prime \prime}+\sin (x) y^{\prime}+x^{2} y=5 y \\
& 3 y^{\prime \prime}+\sin (x) y^{\prime}+\left(x^{2}-5\right) y=0 \quad \text { hongeneous }
\end{aligned}
$$

Constant coefficient linear ODEs

- Linear ODEs: $a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=q(x)$, where $a_{i}(x)$ and $q(x)$ are all functions of x.
- If $a_{i}(x)=a_{i}$ for some constant a_{i}, then it has constant coefficients
- Otherwise, is does not have constant coefficients
- Note, if nonlinear, this terminology does not apply.

$$
\begin{aligned}
& 1 y^{\prime \prime}+y^{\prime}+2 y=0 \quad \text { constant coefficients } \\
& y^{\prime \prime}+5 x y^{\prime}+y=0 \quad \text { nunconstant coefficients } \\
& y^{\prime \prime}+5 y^{\prime}+y=\underbrace{5}_{L_{y}} \text { doesn't } \quad \text { natter }
\end{aligned}
$$

Try it out: homogeneity and $y^{\prime}=\frac{d y c}{d x}$ coefficients?

$$
\dot{x}=\frac{d x}{d \varepsilon} \pi{ }^{2} \text { dep }
$$

- $y^{\prime}+9 y=x^{2}$ not homogeneous, constant coff.
- $y^{\prime}-\pi y=\underline{0} \quad$ A
- $y^{\prime \prime}+x y^{\prime}+y=\underline{0} \quad C$
- $y^{\prime \prime}+e^{x} y^{\prime}=\underline{3}$
- $y^{\prime \prime}-2 y+y^{2}=5 \quad \mathrm{~F}$ because non linear
- $\ddot{x}+4 \dot{\mathrm{x}}=-4 x \quad \ddot{x}+4 \dot{x}+4 x=0 \quad$ hong, conslat coifs.
- $(\sin x) y^{\prime \prime}+e^{x} y^{\prime}+y=0 \quad$ C
- $x y^{\prime \prime}+y=x^{2} \quad D$
- $y^{\prime \prime}+4 y+4=0 \quad y^{\prime \prime}+4 y=-4 \quad B$

A: Homogeneous, constant coefficients
B: Inhomogeneous, constant coefficients
C: Homogeneous, nonconstant coefficients
D: Inhomogeneous, nonconstant coefficients
E: None of the above

Scaling of sols to homogeneous eq

- Let y_{1} be a sol. to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Then $c_{1} y_{1}$ is a solution to the same ODE, where c_{1} is a constant.
prose. (order 2)

$$
y_{1} \text { is a sol to } \frac{a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0}{2}
$$

$$
\begin{aligned}
& \text { 2) } a_{2} \frac{d^{2}}{d x^{2}}\left[c_{1} y_{1}\right]+a_{1} \frac{d}{d x}\left[c_{1} y_{1}\right]+a_{0}\left[c_{1} y_{1}\right] \stackrel{?}{=} 0 \\
& =c_{1}\left[a_{2} \frac{d^{2}}{d x^{2}} y_{1}+a_{1} \frac{d}{d x} y_{1}+a_{0} y_{1}\right]=0
\end{aligned}
$$

Ea. $y^{\prime \prime}+3 y^{\prime}+2 y=0 \quad$ Check $y_{1}: e^{-x}-3 e^{-x}+2 e^{-x}=0 \quad J$

$$
\left.\begin{array}{lr}
y_{1}=e^{-x} & N \\
y_{r}^{\prime}=-e^{-x} & \text { Check } S_{y_{1}}=5 e^{-x} \\
y_{1}^{\prime \prime}=e^{-x} & \frac{d}{d x}\left[5 e^{-x}\right]=-5 e^{-x} \\
\frac{d^{2}}{d x^{2}}\left[5 e^{-x}\right]=5 e^{-x}
\end{array} \right\rvert\, \begin{array}{r}
5 e^{-x}-15 e^{-x}+r_{e^{-x}}^{-x} \\
=0 \\
V
\end{array}
$$

Adding sols to homogeneous equation

- Let $y_{1}(x)$ and $y_{2}(x)$ be sol. to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Then $y_{1}+y_{2}$ is a solution to the same ODE.
prof. Expand and collect terms.
Ex. $y^{\prime \prime}+3 y^{\prime}+2 y_{y}=0 \quad y_{1}=e^{-x} \quad y_{2}=e^{-2 x}$
$C_{\text {ain }}$

$$
\begin{aligned}
& {\left[e^{-x}+e^{-2 x}\right]^{\prime \prime}+3\left[e^{-x}+e^{-2 x}\right]^{\prime}+2\left[e^{-x}+e^{-2 x}\right] } \\
= & e^{-x}+4 e^{-2 x}-3 e^{-x}-6 e^{-2 x}+2 e^{-x}+2 e^{-2 x} \\
= & 0
\end{aligned}
$$

Main Theorems

- Let $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ be solutions to the homogeneous linear ODE

$$
a_{n}(x) y^{(n)}+\cdots a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

- Principal of Superposition: then $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is a solution to the same ODE, where c_{i} are arbitrary constants.
- General solution: If y_{1}, \ldots, y_{n} are linearly independent, then all solutions to the ODE can be written in the form

$$
c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

so we call that the general solution to the ODE.
Recall: independent means $c_{1} y_{1}+\cdots+c_{n} y_{n}=0$

$$
\text { only if } c_{1}=c_{2}=\cdots=c_{n}=0
$$

Constant coefficient homogeneous sol

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=0$, where a_{i} are constant.
- We can write a characteristic polynomial

$$
p(r)=a_{n} r^{n}+\cdots+a_{1} r+a_{0}
$$

- If λ is a root of the polynomial (i.e. $p(\lambda)=0$), then $e^{\lambda x}$ is a solution to the ODE.
- If λ is a root of the polynomial with multiplicity k, then $x^{k-1} e^{\lambda x}$ is a solution to the ODE.
- Note, we will often call λ an eigenvalue of the ODE, for reasons that will become clear later.

Example

$$
\begin{gathered}
\cdot y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
p(r)=r^{2}+3 r+2 \\
p(\lambda)=\lambda^{2}+3 \lambda+2=0 \quad \\
(\lambda+1)(\lambda+2)=0 \\
\lambda=-1,-2
\end{gathered}
$$

Thus $e^{-x}, e^{-2 x}$
are sols

$$
c_{1} e^{-x}+c_{2} e^{-2 x}
$$

is a general solution

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
p(r)=r^{2}+2 r+1 \\
p(\lambda)=\lambda^{2}+2 \lambda+1=0 \\
(\lambda+1)^{2}=0
\end{gathered}
$$

$\lambda=-1$, multiplecty 2
Then $e^{-x}, x e^{-x}$ fare sols.

$$
c_{1} e^{-x}+c_{2} e^{-x}
$$

are general sols.

Intuitive proof idea
$d y, \quad d x$ $\frac{d y}{d x} \quad \frac{d^{2} y}{d x^{2}} \quad\left(\frac{d}{d x}\right) y$

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
\frac{d^{2}}{d x^{2}} y+3 \frac{d}{d x} y+2 y=0 \\
\left(\frac{d^{2}}{d x^{2}}+3 \frac{d}{d x}+2\right) y=0 \\
\left(\frac{d}{d x}+1\right)\left(\frac{d}{d x}+2\right) y=0 \\
\text { or } \\
\left(\frac{d}{d x}+2\right)\left(\frac{d}{d x}+1\right) y=0 \\
e
\end{gathered}
$$

$$
e^{-x}
$$

Gen sol: $\quad C_{1} e^{-2 x}+C_{2} e^{-x}$

Try it out

- Which of the following are solutions to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0 ?
$$

Char. poly

$$
\begin{aligned}
& \lambda^{3}-2 \lambda^{2}-\lambda+2=0 \\
& (\lambda-2)\left(\lambda^{2}-1\right)=0 \\
& (\lambda-2)(\lambda+1)(\lambda-1)=0 \\
& \lambda=-1,1,2
\end{aligned}
$$

Solution: $e^{-x}, e^{x}, e^{2 x}$
Gen sol: $\quad c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{2_{x}}$
A: e^{-x}
B: $e^{2 x}$
C: $e^{-x}+5 e^{x}-2 e^{2 x}$

Try it out malt 3, $e^{-2 x}, x e^{-2 x}, \alpha^{2} e^{-2 x}$

- Find the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$.

$$
\begin{aligned}
& \lambda^{2}+4 \lambda+4=0 \\
& \frac{(1+2)}{\lambda=-2,} \frac{(\lambda+2)}{\text { multiplicity } 2} \\
& e^{-2 x}, \frac{x e^{-2 x}}{e^{-2 x}}+c_{2} x e^{-2 x}
\end{aligned}
$$

- What is the solution to the IVP given

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=2 \text { ? } \\
& c^{y}(x)=c_{1} e^{-2 x}+c_{2} x e^{-2 x} \quad 1=y(0)=c_{1} \quad \leftarrow \\
& y^{\prime}(x)=-2 c_{1} e^{-2 x}-2 c_{2} \underline{x} e^{-2 x_{x}}+c_{2} e^{-2 x} \quad 2=y^{\prime}(0)=-2 c_{1}+c_{2} \leftarrow \\
& c_{1}=1, c_{2}=4 \\
& y(x)=e^{-2 x}+4 x e^{-2 x} \\
& \text { A: } e^{-2 x}+2 x e^{-2 x} \\
& \text { B: }-\frac{1}{3} e^{-2 x}+\frac{4}{3} x e^{-2 x} \\
& \text { C: }-\frac{1}{2} e^{-2 x}+2 c_{2} x e^{-2 x}
\end{aligned}
$$

Euler's Formula: $e^{i \theta}=\cos \theta+i \sin \theta$

- Real powers define exponential growth.
- $e^{0}=1$
- $e^{1}=e \approx 2.718$
- $e^{2} \approx 7.389$
- Imaginary powers encode rotation around the complex origin.
- $e^{0 i}=1$
- $e^{\frac{\pi}{4} i}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$
- $e^{\frac{\pi}{2} i}=i$
- $e^{\pi i}=-1$
https://en.wikipedia.org/wiki/Euler\'s_formula\# /media/File:Euler's_formula.svg

Complex roots \rightarrow Real solutions

- Consider the equation $y^{\prime \prime}+y=0$
- Use $e^{i x}=\cos x+i \sin x$

$$
\begin{aligned}
& \lambda^{2}+1=0 \\
& \lambda= \pm \sqrt{-1}= \pm i \\
& (\lambda+i)(\lambda-i)=0
\end{aligned}
$$

$$
\lambda=i,-i
$$

$$
\begin{aligned}
& \lambda=i_{1}-i \\
& y=c_{1} e^{i x}+c_{2} e^{-i x} e
\end{aligned}
$$

$$
\left.\begin{array}{l}
=c_{1} e^{i x}+c_{2} e^{-i x} e \\
y=c_{1} \cos x+i c_{1} \sin x+c_{2} \cos x-i c_{2} \sin x \\
y=\underbrace{\left(c_{1}+c_{2}\right)}_{\hat{c}_{1}} \cos x+\underbrace{i\left[c_{1}-c_{2}\right)}_{\hat{c}_{2}} \sin x
\end{array}\right\} \text { conpllac }
$$

Or $\quad y=\hat{c}_{1} \cos x+\hat{c}_{2} \sin x \in$

Another example

$$
\begin{aligned}
& y=\hat{c}_{1} e^{-x} \cos (2 x)+\hat{c}_{2} e^{-x} \sin (2 x) \\
& \text { Or } \\
& y=e^{-x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]
\end{aligned}
$$

Complex roots with real coefficients

- Complex roots of a real polynomial always come in pairs $a \pm i b$.
- If a characteristic equation of an ODE has roots $a \pm i b$, then has complex solutions $e^{(a+i b) x}$ and $e^{(a-i b) x}$.
- Alternately, it has real solutions $e^{a x} \sin b x$ and $e^{a x} \cos b x$

Ex.

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+10 y=0 \\
& \lambda^{2}-2 \lambda+10=0 \\
& \lambda=\frac{2 \pm \sqrt{4-40}}{2}=1 \pm \sqrt{-9}=1 \pm 3 i \\
& y=c_{1} e^{x} \sin 3 x+c_{2} e^{x} \cos 3 x
\end{aligned}
$$

Try it out

- Let $y^{\prime \prime}+4 y^{\prime}+29 y=0$.
- Which of the following are solutions to the ODE?

$$
\begin{aligned}
& \lambda^{2}+4 \lambda+29=0 \\
& \lambda^{2}+4 \lambda+4+25=0 \\
& (\lambda+2)^{2}=-25 \\
& \lambda+2= \pm 5 i \quad e^{(-2+5 i) x}, e^{(-2-5 i) x} \\
& \lambda=-2 \pm 5 i \quad e^{-2 e} \cos 5 x, e^{-2 x} \sin 5 x
\end{aligned}
$$

-What about real solutions?

$$
\text { orly real } \longrightarrow \xrightarrow[\begin{array}{c}
\text { D: All of the above } \\
\text { E: None of the above }
\end{array}]{\begin{array}{l}
\text { A: } e^{(-2+5 i) x}+4 e^{(-2-5 i) x} \\
\text { B: }-\pi e^{-2 x} e^{5 i x}=-\pi e^{-2 x}+\text { sir } \\
\text { C: } e^{-2 x} \cos 5 x
\end{array}} \begin{aligned}
& \text { (romper }
\end{aligned}
$$

Repeated complex eigenvalues of ODE

- Like repeated real roots, if $a \pm b i$ have multiplicity k, then $x^{k-1} e^{a x} \cos b x$ and $x^{k-1} e^{a x} \sin b x$ are solutions.

$$
\begin{array}{ll}
\text { Ex. } & y^{\prime \prime \prime \prime}+4 y^{\prime \prime}+4 y=0 \\
& \lambda^{4}+4 y^{2}+4=0 \\
& \left(\lambda^{2}+2\right)^{2}=0 \quad \rightarrow(\lambda+i \sqrt{2})^{2}(d-i \sqrt{2})^{2}=0 \\
& \lambda^{2}=-2 \\
& \lambda= \pm i \sqrt{2}, \operatorname{molt} 2 \\
\Rightarrow y= & c_{1} \cos (\sqrt{2} x)+c_{2} x \cos (\sqrt{2} x)+c_{3} \sin (\sqrt{2} x)+c_{4} x \sin (\sqrt{2} x)
\end{array}
$$

Summary

- To solve a linear nth-order homogeneous ODE

$$
a_{n} y^{(n)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

- Construct the characteristic equation

$$
a_{n} \lambda^{n}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0
$$

- The n roots (counting multiplicity) of the characteristic equation are either real or come in complex conjugate pairs.
- If λ is a (real or complex) root of multiplicity k, then $e^{\lambda x}, x e^{\lambda x}, \ldots x^{k-1} e^{\lambda x}$ are linearly independent solutions.
- If $\lambda=a \pm i b$ is a conjugate pair of complex roots, each of multiplicity k, then $e^{a x} \cos b x, x e^{a x} \cos b x, \ldots, x^{k-1} e^{a x} \cos b x$ and $e^{a x} \sin b x, x e^{a x} \sin b x, \ldots, x^{k-1} e^{a x} \sin b x$ are $2 k$ linearly independent solutions.

Application: mass-spring system

- A spring acts on an attached 1 kg object with force -4
Newtons/meter times the displacement in meters.
- Let y be the displacement of the object at time x, and y^{\prime} is its velocity.
- By Newton's $2^{\text {nd }}$ law, $F=m a$, where F is force, m is mass, and $a=y^{\prime \prime}$ is acceleration.

Initial Value Problem

- $y^{\prime \prime}+4 y=0$, where $y^{\prime}(0)=0, y(0)=10$.

$$
\left.\begin{array}{rl}
y=c_{1} \cos 2 x+c_{2} \sin 2 x & 10=y(0)=c_{1} \cdot 1+c_{2} \cdot 0 \\
& \Rightarrow c_{1}=10 \\
y^{\prime}=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x & 0=y^{\prime}(0)
\end{array}\right)=-2 c_{1} \cdot 0+2 c_{2} \cdot 1 .
$$

