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Recall: linear higher-order ODEs
• Linear ODEs: 𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 𝑞(𝑥), 

where 𝑎𝑖 𝑥 and 𝑞 𝑥 are all functions of 𝑥.

A: Linear
B: Nonlinear
C: Both
D: ???
E: None of the above



(In)homogeneous linear ODEs
• Linear ODEs: 𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 𝑞(𝑥), 

where 𝑎𝑖 𝑥 and 𝑞 𝑥 are all functions of 𝑥.
• If 𝑞 𝑥 = 0, then homogeneous.

• Otherwise, it is inhomogeneous.

• Note, if nonlinear, then neither definition applies.



Constant coefficient linear ODEs
• Linear ODEs: 𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 𝑞(𝑥), 

where 𝑎𝑖 𝑥 and 𝑞 𝑥 are all functions of 𝑥.
• If 𝑎𝑖 𝑥 = 𝑎𝑖 for some constant 𝑎𝑖, then it has constant 

coefficients
• Otherwise, is does not have constant coefficients
• Note, if nonlinear, this terminology does not apply.



Try it out: homogeneity and 
coefficients?
• 𝑦′ + 9𝑦 = 𝑥2

• 𝑦′ − 𝜋𝑦 = 0

• 𝑦′′ + 𝑥𝑦′ + 𝑦 = 0

• 𝑦′′ + 𝑒𝑥𝑦′ = 3

• 𝑦′′ − 2𝑦 + 𝑦2 = 5

• ሷ𝑥 + 4 ሶx = −4𝑥

• (sin 𝑥)𝑦′′ + 𝑒𝑥𝑦′ + 𝑦 = 0

• 𝑥𝑦′′ + 𝑦 = 𝑥2

• 𝑦′′ + 4𝑦 + 4 = 0

A: Homogeneous, constant coefficients
B: Inhomogeneous, constant coefficients
C: Homogeneous, nonconstant coefficients
D: Inhomogeneous, nonconstant coefficients
E: None of the above



Scaling of sols to homogeneous eq
• Let 𝑦1 be a sol. to the homogeneous linear ODE

𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 0

• Then 𝑐1𝑦1 is a solution to the same ODE, where 𝑐1 is a 
constant.



Adding sols to homogeneous equation
• Let 𝑦1(𝑥) and 𝑦2(𝑥) be sol. to the homogeneous linear 

ODE
𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 0

• Then 𝑦1 + 𝑦2 is a solution to the same ODE.



Main Theorems

• Let 𝑦1 𝑥 , 𝑦2 𝑥 ,… , 𝑦𝑛 𝑥 be solutions to the 
homogeneous linear ODE

𝑎𝑛 𝑥 𝑦(𝑛) +⋯𝑎1 𝑥 𝑦′ + 𝑎0 𝑥 𝑦 = 0

• Principal of Superposition: then 𝑐1𝑦1 + 𝑐2𝑦2 +⋯+ 𝑐𝑛𝑦𝑛
is a solution to the same ODE, where 𝑐𝑖 are arbitrary 
constants.

• General solution: If 𝑦1, … , y𝑛 are linearly independent, 
then all solutions to the ODE can be written in the form

𝑐1𝑦1 + 𝑐2𝑦2 +⋯+ 𝑐𝑛𝑦𝑛
so we call that the general solution to the ODE.



Constant coefficient homogeneous sol

• Consider 𝑎𝑛𝑦
(𝑛) +⋯+ 𝑎1𝑦

′ + 𝑎0𝑦 = 0, where 𝑎𝑖
are constant.

• We can write a characteristic polynomial
𝑝 𝑟 = 𝑎𝑛𝑟

𝑛 +⋯+ 𝑎1𝑟 + 𝑎0
• If 𝜆 is a root of the polynomial (i.e. 𝑝 𝜆 = 0), then 
𝑒𝜆𝑥 is a solution to the ODE.

• If 𝜆 is a root of the polynomial with multiplicity 𝑘, 
then 𝑥𝑘−1𝑒𝜆𝑥 is a solution to the ODE.

• Note, we will often call 𝜆 an eigenvalue of the ODE, 
for reasons that will become clear later.



Example

• 𝑦′′ + 3𝑦′ + 2𝑦 = 0 𝑦′′ + 2𝑦′ + 𝑦 = 0



Intuitive proof idea



Try it out

• Which of the following are solutions to
𝑦′′′ − 2𝑦′′ − 𝑦′ + 2𝑦 = 0?

A: 𝑒−𝑥

B: 𝑒2𝑥

C: 𝑒−𝑥 + 5𝑒𝑥 − 2𝑒2𝑥

D: All of the above
E: None of the above



Try it out
• Find the general solution to 𝑦′′ + 4𝑦′ + 4𝑦 = 0.

• What is the solution to the IVP given
𝑦′′ + 4𝑦′ + 4𝑦 = 0, 𝑦 0 = 1, 𝑦′ 0 = 2?

A: 𝑐1𝑒
−2𝑥

B: 𝑐1𝑥𝑒
−2𝑥

C: 𝑐1𝑒
−2𝑥 + 𝑐2𝑥𝑒

−2𝑥

D: All of the above
E: None of the above

A: 𝑒−2𝑥 + 2𝑥𝑒−2𝑥

B: −
1

3
𝑒−2𝑥 +

4

3
𝑥𝑒−2𝑥

C: −
1

2
𝑒−2𝑥 + 2𝑐2𝑥𝑒

−2𝑥

D: All of the above
E: None of the above



Euler’s Formula: 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

• Real powers define 
exponential growth.
• 𝑒0 = 1

• 𝑒1 = 𝑒 ≈ 2.718

• 𝑒2 ≈ 7.389

• Imaginary powers 
encode rotation 
around the complex 
origin.
• 𝑒0𝑖 = 1

• 𝑒
𝜋

4
𝑖 =

2

2
+ 𝑖

2

2

• 𝑒
𝜋

2
𝑖 = 𝑖

• 𝑒𝜋𝑖 = −1

https://en.wikipedia.org/wiki/Euler%27s_formula#
/media/File:Euler's_formula.svg



Complex roots → Real solutions

• Consider the equation 𝑦′′ + 𝑦 = 0

• Use 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥



Another example

• 𝑦′′ + 2𝑦′ + 5𝑦 = 0



Complex roots with real coefficients

• Complex roots of a real polynomial always come in pairs 
𝑎 ± 𝑖𝑏.

• If a characteristic equation of an ODE has roots 𝑎 ± 𝑖𝑏, 
then has complex solutions 𝑒 𝑎+𝑖𝑏 𝑥 and 𝑒 𝑎−𝑖𝑏 𝑥.

• Alternately, it has real solutions 𝑒𝑎𝑥 sin 𝑏𝑥 and 
𝑒𝑎𝑥 cos 𝑏𝑥



Try it out
• Let 𝑦′′ + 4𝑦′ + 29𝑦 = 0.

• Which of the following are solutions to the ODE?

• What about real solutions?

A: 𝑒 −2+5𝑖 𝑥 + 4𝑒 −2−5𝑖 𝑥

B: −𝜋𝑒−2𝑥𝑒5𝑖𝑥

C: 𝑒−2𝑥 cos 5𝑥
D: All of the above
E: None of the above



Repeated complex eigenvalues of ODE

• Like repeated real roots, if 𝑎 ± 𝑏𝑖 have multiplicity 
𝑘, then 𝑥𝑘−1𝑒𝑎𝑥 cos 𝑏𝑥 and 𝑥𝑘−1𝑒𝑎𝑥 sin 𝑏𝑥 are 
solutions.



Summary

• To solve a linear nth-order homogeneous ODE
𝑎𝑛𝑦

(𝑛) +⋯+ 𝑎2𝑦
′′ + 𝑎1𝑦

′ + 𝑎0𝑦 = 0

• Construct the characteristic equation
𝑎𝑛𝜆

𝑛 +⋯+ 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0

• The 𝑛 roots (counting multiplicity) of the 
characteristic equation are either real or come in 
complex conjugate pairs.

• If 𝜆 is a (real or complex) root of multiplicity 𝑘, then 
𝑒𝜆𝑥 , 𝑥𝑒𝜆𝑥 , … 𝑥𝑘−1𝑒𝜆𝑥 are linearly independent 
solutions.

• If 𝜆 = 𝑎 ± 𝑖𝑏 is a conjugate pair of complex roots, 
each of multiplicity 𝑘, then 
𝑒𝑎𝑥 cos 𝑏𝑥 , 𝑥𝑒𝑎𝑥 cos 𝑏𝑥 , … , 𝑥𝑘−1𝑒𝑎𝑥 cos 𝑏𝑥 and 
𝑒𝑎𝑥 sin 𝑏𝑥 , 𝑥𝑒𝑎𝑥 sin 𝑏𝑥 , … , 𝑥𝑘−1𝑒𝑎𝑥 sin 𝑏𝑥 are 2𝑘
linearly independent solutions.



Application: mass-spring system
• A spring acts on an attached 

1kg object with force -4 
Newtons/meter times the 
displacement in meters.

• Let 𝑦 be the displacement of 
the object at time 𝑥, and 𝑦′ is 
its velocity.

• By Newton’s 2nd law, 𝐹 = 𝑚𝑎, 
where 𝐹 is force, 𝑚 is mass, 
and 𝑎 = 𝑦′′ is acceleration.



Initial Value Problem

• 𝑦′′ + 4𝑦 = 0, where 𝑦′ 0 = 0, 𝑦 0 = 10.
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