Nonhomogeneous constant coefficient ODEs Lecture 9c: 2023-03-16

MAT A35 - Winter 2023 - UTSC

Prof. Yun William Yu

(In)homogeneous constant coefficient

 linear ODEs- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$, where a_{i} are constant coefficients and $q(x)$ is a functions of x.
- If $q(x)=0$, then homogeneous.
- Otherwise, it is inhomogeneous.

Es.

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+5 y=5 \\
& y^{\prime}+7 y=3 x
\end{aligned}
$$

$$
y^{\prime \prime}-y=3 e^{x}
$$

Solution to inhomogeneous problems

- Consider the inhomogeneous equation

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)
$$

- The associated homogeneous equation (which we know how to solve) is:

$$
a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

- If y_{p} is a any "particular" solution to the inhomogeneous equation, and y_{h} is the general solution to the associated homogeneous equation, then $y=y_{p}+y_{g}$ is the general solution to the inhomogeneous equation.

Example

$$
\cdot y^{\prime \prime}+3 y^{\prime}+2 y=6
$$

Home eq.

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
& \lambda^{2}+3 \lambda+2=0 \\
& (\lambda+1)(1+2)=0 \\
& \lambda=-1,-2 \\
& y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}
\end{aligned}
$$

Particular sol Lo

$$
y^{n}+3 y^{2}+2 y=6
$$

$$
\text { Guess } \begin{aligned}
\overrightarrow{y_{p}} & =A, A \text { constant } \\
y_{p}^{\prime} & =0 \\
y_{p}^{\prime \prime} & =0
\end{aligned}
$$

$$
0+3.0+2 A=6
$$

$$
\Rightarrow A=3, \quad y_{p}=3
$$

$$
y_{\text {gen }}=y_{h}+y_{p}=c_{1} e^{-x}+c_{2} e^{-2 x}+3
$$

Example

- $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 x}$
$y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x} \quad$ (from last slide)
Guess particular:

$$
\begin{aligned}
& y_{p}=A e^{-3 x} \\
& y_{p}^{\prime}=-3 A e^{-3 x} \\
& y_{p}^{\prime \prime}=9 A e^{-3 x}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 x} \Rightarrow \frac{9 A e^{-3 x}}{}+\frac{3\left(-3 A e^{-3 x}\right)}{2 A e^{-3 x}=e^{-3 x}}+2 A e^{-3 x}=e^{-3 x} \\
& 2 A=1 \\
& A=\frac{1}{2} \\
& y_{g \mu}=c_{1} e^{-x}+c_{2} e^{-2 x}+\frac{1}{2} e^{-3 x} \quad \begin{array}{l}
y_{p}=\frac{1}{2} e^{-3 x}
\end{array}
\end{aligned}
$$

Method of undetermined coefficients

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$
- Notice that whatever we guess for the particular solution y_{p} we have to take derivatives of it. A reasonable "Ansatz", guess, is y_{p} will "look like" the derivatives of $q(x)$ but with different coefficients.
E.

$$
\begin{array}{ll}
q(x)=5 x^{2}+2 x \cdot 1 & y_{p}=A x^{2}+B x+C \\
q(x)=e^{2 x}+2 x^{2} & y_{p}=A e^{2 x}+B_{x}^{2}+C x+D \\
q(x)=\sin x & y_{p}=A \sin x+B \cos x
\end{array}
$$

Try it out: guess an Ansatz

$$
q(x)=e^{x}+e^{2 x}
$$

A: $A e^{x}$
B: $A e^{2 x}$
C: $A e^{x}+B e^{2 x}$
D: $A e^{x}+B e^{2 x}+C$
E: None of the above

$$
\begin{aligned}
& \text { • } q(x)=3 x^{2}+\sin x \\
& A \alpha^{2}+B_{\alpha}+C \quad D \sin \downarrow+E \cos r \begin{array}{l}
\text { A: } A x^{2}+B \sin x \\
B: A x^{2}+B \sin x+C \cos x \\
C: A x^{2}+B x+C+D \sin x
\end{array} \\
& \begin{array}{l}
\text { D: } A x^{2}+B x+C+D \sin x+ \\
E \cos x
\end{array} \\
& \hline \text { E: None of the above }
\end{aligned}
$$

$$
\begin{aligned}
& q(x)=\frac{1}{x}=x^{-1} \\
& \boldsymbol{\downarrow} \\
& A_{x}^{-1}+B_{x}^{-2}+C_{x}^{-3}+D_{x}^{-4}+\cdots \quad \begin{array}{l}
\text { A: } A \ln x+B \\
\text { B: } \frac{A}{x}+B \\
\text { C: } \frac{A}{x}+\frac{B}{x^{2}}+D \\
\text { D: } \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+D \\
\end{array}
\end{aligned}
$$

Ansatz-homogeneous solution collisions

- What if your Ansatz looks like one of the homogeneous solutions?
- Then just like with repeated roots, will need to add an " x ".
E. $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-x}$

$$
y_{h}=e_{1} e^{-x}+c_{2} e^{-2 x}
$$

$$
\begin{aligned}
& \text { Ansalf: } y_{p}=A e^{-x} \\
& \text { Ansedz: } y_{p}=A \underline{x} e^{-x}
\end{aligned}
$$

Try it out: guess an Ansatz y_{p}

- $y^{\prime \prime}+3 y^{\prime}+2 y=e^{x}+e^{2 x}$
$y_{n}=c_{1} e^{-x}+c_{2} e^{-2 x}$
- $y^{\prime \prime}-y=e^{x}+e^{2 x}$

$$
y_{n}=c_{1} e^{x}+c_{2} e^{-x}
$$

$$
A \operatorname{arath}: A \times e^{x}+D e
$$

$2 x$

- $y^{\prime \prime}+y=\sin x$

$$
y_{h}=c_{1} \sin x+c_{2} \cos x
$$

$A x \sin x$

$$
+C_{B x \cos x}
$$

A: $\widehat{A e^{x}+B e^{2 x}}$
B: $A x e^{x}+B e^{2 x}$
C: $A e^{x}+B x e^{2 x}$
D: $A x e^{x}+B x e^{2 x}$
E : None of the above

A: $A e^{x}+B e^{2 x}$
B: $A x e^{x}+B e^{2 x}$
C: $A e^{x}+B x e^{2 x}$
D: $A x e^{x}+B x e^{2 x}$
E: None of the above

A: $A \sin x$
B: $A \sin x+B \cos x$
C: $A x \sin x+B \cos x$
D: $A x \sin x+B x \cos x$
E : None of the above

Example

- $y^{\prime}+2 y=x^{2}, y(0)=1$

$$
\begin{aligned}
& y_{g a n}=y_{h}+y_{p}=c_{1} e^{-2 x}+\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4} \\
& \perp \rightarrow 2=3
\end{aligned}
$$

$$
\begin{gathered}
\lambda+2=0 \\
\left.\begin{array}{l}
1=-2 \\
y_{h}=c_{1} e^{-2 x} \\
\left.\begin{array}{l}
y_{p}=A x^{2}+B_{x}+c \\
y_{p}^{\prime}=2 A x+B \\
y_{p}^{\prime}+2 y_{p}=2 A x+B+2 A \\
2 A_{x}^{2}=x^{2} \\
2 A_{x}+2 B_{x}=0 \\
B+2 C=0
\end{array}\right\}
\end{array}\right\}, \$ \text {, }
\end{gathered}
$$

$$
y_{p}=\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}
$$

$$
y=\frac{3}{4} e^{-2 x}+\frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{4}
$$

$$
\left.\begin{array}{l}
B+2 A x^{2}+2 B x+2 C=x^{2} \\
7 \quad 2 A=1 \quad 2 A=\frac{1}{2}
\end{array}\right)
$$

Summary

- Consider $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=q(x)$
- We can compute the homogeneous solution by looking at roots of the characteristic polynomial $a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}=0$, and independent solutions will be of the form $e^{\lambda x}$ or $e^{\operatorname{Re}(\lambda) x} \cos (\operatorname{Im}(\lambda) x)$ and $e^{\operatorname{Re}(\lambda) x} \sin (\operatorname{Im}(\lambda) x)$.
- We can often guess a particular solution by using an Ansatz with undetermined coefficients that looks like the derivatives of $q(x)$. We can then solve for the coefficients.
- The general solution is then given by the homogeneous solution plus any particular solution.
- We can solve an initial value problem by plugging those values back into the general solution.

