Nonhomogeneous constant coefficient ODEs Lecture 9c: 2023-03-16

MAT A35 – Winter 2023 – UTSC Prof. Yun William Yu

(In)homogeneous constant coefficient linear ODEs

- Consider $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = q(x)$, where a_i are constant coefficients and q(x) is a functions of x.
 - If q(x) = 0, then homogeneous.

• Otherwise, it is inhomogeneous.

Y
$$44y'+5y = 5$$
 $y''-y = 3e^{x}$

Solution to inhomogeneous problems

Consider the inhomogeneous equation

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$$

 The associated homogeneous equation (which we know how to solve) is:

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$$

• If y_p is a any "particular" solution to the inhomogeneous equation, and y_h is the general solution to the associated homogeneous equation, then $y = y_p + y_g$ is the general solution to the inhomogeneous equation.

Example

•
$$y'' + 3y' + 2y = 6$$

How eq.

$$\gamma'' + 3\gamma' + 2\gamma = 0$$

 $\lambda^2 + 3\lambda + 2 = 0$
 $(\lambda + 1)(\lambda + 12) = 0$
 $\lambda = -1, -2$
 $Y_h = c_1 e^{-x} + c_2 e^{-2x}$

Particular sol to

$$\gamma'' + 3\gamma' + 2\gamma = 6$$

Guess $Y_p = A$, A constant
 $\gamma_p' = 0$
 $\gamma_p'' = 0$
 $\gamma_p'' = 0$
 $0 + 3 \cdot 0 + 2A = 6$
 $= 7 A = 3$, $\gamma_p = 3$

Example

•
$$y'' + 3y' + 2y = e^{-3x}$$
 $V_h : c_1 e^{-x} + c_2 e^{-2x}$ (from last slide)

Guess particular: $Y_p = A e^{-3x}$
 $Y_p'' = -3Ae^{-3x}$
 $Y_p'' = 9Ae^{-3x}$
 $Y_p'' = 9Ae^{-3x} + 3(-3Ae^{-3x}) + 2Ae^{-3x} = e^{-3x}$
 $Y_{gn} = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2}e^{-3x}$
 $Y_{gn} = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2}e^{-3x}$
 $Y_p'' = a^{-3x} + a^{-3x}$

Method of undetermined coefficients

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$
- Notice that whatever we guess for the particular solution y_p we have to take derivatives of it. A reasonable "Ansatz", guess, is y_p will "look like" the derivatives of q(x) but with different coefficients.

$$\frac{Ex}{2} \cdot 2(x) = 5x^{2} + 2x \cdot 1$$

$$q(x) = e^{2x} + 2x^{2}$$

$$q(x) = e^{2x} + 2x^{2}$$

$$q(x) = sin x$$

$$q(x) = sin x$$

$$q(x) = sin x$$

$$q(x) = 4sin x + 3c - 3x$$

Try it out: guess an Ansatz

$$q(x) = e^x + e^{2x}$$

A:
$$Ae^{x}$$

B: Ae^{2x}
C: $Ae^{x} + Be^{2x}$
D: $Ae^{x} + Be^{2x} + C$

E: None of the above

•
$$q(x) = 3x^2 + \sin x$$

A: $Ax^2 + B \sin x$
B: $Ax^2 + B \sin x + C \cos x$
C: $Ax^2 + Bx + C + D \sin x$
D: $Ax^2 + Bx + C + D \sin x$

A:
$$Ax^2 + B \sin x$$

B: $Ax^2 + B \sin x + C \cos x$

$$C: Ax^2 + Bx + C + D\sin x$$

$$D:Ax^2 + Bx + C + D\sin x +$$

 $E\cos x$

E: None of the above

$$q(x) = \frac{1}{x} : x$$

$$A_{x}^{-1} + B_{x}^{-2} + C_{x}^{-3} + D_{x}^{-4} + \cdots$$

$$A: A \ln x + B$$

$$B: \frac{A}{x} + B$$

C:
$$\frac{A}{x} + \frac{B}{x^2} + D$$

D:
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + D$$

E. None of the above

Ansatz-homogeneous solution collisions

- What if your Ansatz looks like one of the homogeneous solutions?
- Then just like with repeated roots, will need to add an "x".

Try it out: guess an Ansatz y_p

•
$$y'' + 3y' + 2y = e^{x} + e^{2x}$$

 $y_{h} = c_{1}e^{-x} + c_{2}e^{-2x}$

•
$$y'' - y = e^x + e^{2x}$$

$$\forall_h : c_l e^x + c_2 e^x$$

$$Anatr: A \times e^x + 0 e^2$$

$$y'' + y = \sin x$$

$$y_h = c_1 \sin x + c_2 \cos x$$

$$A \times \sin x + B \times \cos x$$

A:
$$Ae^x + Be^{2x}$$

B: $Axe^x + Be^{2x}$

 $C: Ae^x + Bxe^{2x}$

D: $Axe^x + Bxe^{2x}$

E: None of the above

A:
$$Ae^x + Re^{2x}$$

 $B: Axe^x + Be^{2x}$

 $C: Ae^x + Bxe^{2x}$

 $D: Axe^x + Bxe^{2x}$

E: None of the above

A: $A \sin x$

B: $A \sin x + B \cos x$

C: $Ax \sin x + B \cos x$

D: $Ax \sin x + Bx \cos x$

E: None of the above

Example

•
$$y' + 2y = x^2$$
, $y(0) = 1$

$$\lambda + 2 = 0
A = -2$$

$$y_{h} = c_{1}e^{-2x}$$

$$y_p = \frac{x^2}{2} - \frac{x}{2} + \frac{1}{4}$$
 $y = \frac{3}{4} e^{-2x} + \frac{x^2}{2} - \frac{x}{2} + \frac{1}{4}$

Summary

- Consider $a_n y^{(n)} + \dots + a_1 y' + a_0 y = q(x)$
- We can compute the homogeneous solution by looking at roots of the characteristic polynomial $a_n \lambda^n + \dots + a_1 \lambda + a_0 = 0$, and independent solutions will be of the form $e^{\lambda x}$ or $e^{Re(\lambda)x} \cos(Im(\lambda)x)$ and $e^{Re(\lambda)x} \sin(Im(\lambda)x)$.
- We can often guess a particular solution by using an Ansatz with undetermined coefficients that looks like the derivatives of q(x). We can then solve for the coefficients.
- The general solution is then given by the homogeneous solution plus any particular solution.
- We can solve an initial value problem by plugging those values back into the general solution.