MATA35- Quiz 5 - Practice
Name: Prof \vee_{\imath}
Student ID: Solutions Guide

Problem 1 [6 pts .
(a) Rewrite the complex expression $e^{1+\frac{\pi}{3} i}$ in the standard form $a+b i$, where a and b are real numbers.

$$
\begin{aligned}
e^{1+\frac{\pi}{3} i} & =e^{\prime} e^{\frac{\pi}{3} i}=e\left[\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right] \\
& =e\left[\frac{1}{2}+i \cdot \frac{\sqrt{3}}{2}\right]=\frac{1}{2} e+\frac{e \sqrt{3}}{2} i
\end{aligned}
$$

(b) Find the modulus and argument (angle) for the following complex number: $-1-i$.
(c) Find the modulus and argument for $(-1-i)^{1000}$. Simplify as much as is reasonable without a calculator; e.g. you do not need to evaluate things like 2^{500}, but should simplify $\sqrt{2}^{1000}=2^{500}$.

Problem 2 [5pts]. Consider the following ODE:

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=x+1
$$

(a) Find the real homogeneous solution.
(b) Find a real particular solution
(c) Find the real general solution

$$
\text { (a) } \begin{aligned}
& \lambda^{3}+\lambda^{2}-\lambda-1=0 \\
&(\lambda+1)\left(\lambda^{2}-1\right)=0 \\
&(\lambda+1)^{2}(\lambda-1)=0 \\
& \lambda=\left\{\begin{array}{c}
-1, \text { multiplicity } 2 \\
1
\end{array}\right.
\end{aligned}
$$

$$
y_{\text {hon }}=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} e^{x}
$$

(b) Ansate for particular sol.

$$
\begin{aligned}
& y_{p}=A x+B \\
& y_{p}{ }^{\prime}=A \\
& y_{p}{ }^{\prime \prime}=0 \\
& y_{p}{ }^{r \prime}=0 \\
& y^{r \prime \prime}+y^{\prime r}-y^{r}-y=-A-A x-B=x+1 \\
& y^{\prime \prime}=B=1 \\
& y_{p}=A=-1
\end{aligned}
$$

(c)

$$
y_{g e n}=y_{h}+y_{p}=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} e^{x}-x
$$

Problem 3 [5pts]. Solve the following initial value problem:

$$
\dot{x}=x+2 y
$$

$$
\dot{y}=2 x+4 y
$$

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $x(0)=5$ and $y(0)=0$.
Sol 1: Redactor

$$
\begin{aligned}
& \ddot{x}=\dot{x}+2 \dot{y} \\
& \ddot{x}=\dot{x}+2(2 x+4 y)=\dot{x}+4 x+8 y \\
& y=\frac{1}{2}(\dot{x}-x) \\
& \ddot{x}=\dot{x}+4 x+4(\dot{x}-x) \\
& \ddot{x}=5 \dot{x} \\
& \ddot{x}-5 \dot{x}=0
\end{aligned}
$$

Char eq:

$$
\begin{aligned}
& \lambda^{2}-5 \lambda=0 \\
& \lambda(\lambda-5)=0 \\
& \lambda=0,5
\end{aligned}
$$

$$
x=c_{1} e^{0 t}+c_{2} e^{5 t}=c_{1}+c_{2} e^{5 t}
$$

$$
\dot{x}=5 \tau_{2} e^{5 t}
$$

$$
y=\frac{1}{2}(\dot{x}-x)=\frac{1}{2}\left(5_{c_{2}} e^{5 t}-\left(c_{1}+c_{2} e^{j t}\right)\right)
$$

$$
=2 c_{2} e^{5 t}-\frac{1}{2} c_{1}
$$

Plugging in $\left.x(0)=5=c_{1}+c_{2} \quad\right\} c_{1}=4$

$$
\begin{aligned}
& \left.y(0)=0=2 c_{2}-\frac{1}{2} c_{1}\right\} c_{2}^{5 t}=1 \\
& y=-2+2 e^{5 t}
\end{aligned}
$$

Sol 2: Matrix

$$
\begin{aligned}
& \begin{array}{c}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
-2 & \lambda-4
\end{array}\right|=\lambda^{2}-5 \lambda+4-4=0 \\
\lambda^{2}-5 \lambda=0
\end{array} \\
& \lambda(\lambda-5)=0 \\
& \lambda=0,5 \text {. } \\
& \lambda_{1}=0 \\
& {\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& x+2 y=0 \\
& x=-24 \\
& v_{1}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
& \lambda_{2}=5\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 x \\
5 y
\end{array}\right] \\
& \begin{array}{c}
x+2 y=5 x \quad v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
y=2 x
\end{array} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{5 t}} \\
& \text { Plugging in }\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+c_{2} \\
c_{1}+2 c_{2}
\end{array}\right] \\
& c_{1}=-2 c_{2} \\
& \Rightarrow c_{1}=-2, c_{2}=1 \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=-2\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{s t}} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
4+e^{5 t} \\
-2+2 e^{5 t}
\end{array}\right] \quad \text { Page 3 }}
\end{aligned}
$$

Problem $4[4 \mathrm{pts}]$. Let $\dot{z}=A z$ for each of the following 2 x 2 matrices A. Classify the equilibrium at the origin by type and stability.
(a)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -4 \\
1 & 1
\end{array}\right] } \\
&\left|\begin{array}{cc}
\lambda-1 & 4 \\
-1 & \lambda-1
\end{array}\right|= \lambda^{2}-2 \lambda+1+4=0 \\
&(\lambda-1)^{2}=-4 \\
& \lambda-1= \pm 2 i \\
& \lambda=1 \pm 2 i
\end{aligned}
$$

(b) $\left[\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right]$

$$
\lambda=-3,-3
$$

node, asymptotically stable
(c) $\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right]$

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda+1 & -2 \\
-2 & \lambda+1
\end{array}\right|= & (\lambda+1)^{2}-4=0 \\
& \lambda+1= \pm 2 \\
\lambda & =-3,1
\end{aligned}
$$

Saddle pt,
unstable

$$
\begin{aligned}
& \text { (d) } \left.\begin{array}{rl}
0 & 4 \\
-1 & 0
\end{array}\right] \\
& \left|\begin{array}{cc}
\lambda & -4 \\
1 & \lambda
\end{array}\right|= \\
& \lambda^{2}+4=0 \\
& \\
& \\
& \lambda^{2}=-4 \\
& \\
& \\
& \lambda= \pm 2 i
\end{aligned}
$$

Note: stable t asymp stable are not the same thing

Problem 5 [pts]. Tank A contains 100 gallons of water. Tank B contains 200 gallons of water with 50 lb of salt dissolved. Water is pumped from tank A to tank B at a rate of 10 gallons per minute. Water is pumped from tank B to tank A at a rate of 5 gallons per minute. Water is drained from tank B to the outside at a rate of 5 gallons per minute. Pure water is added to tank A at a rate of 5 gallons per minute. Let $A(t)$ and $B(t)$ denote the total amount of salt present in tanks A and B respectively.
(a) Draw a 2-compartment model for A and B .
(b) Write a system of two first-order differential equations modelling the system.
(c) Find the equilibrium values for A and B .

$$
\text { (b) } \dot{A}=-\frac{A}{10}+\frac{B}{40}
$$

$$
\text { (c) }\left\{\begin{array}{l}
0=-\frac{A}{10}+\frac{B}{40} \\
0=\frac{A}{10}-\frac{B}{20}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
0=-4 A+B \\
0=2 A-B
\end{array}\right.
$$

Formulas that may be useful:

$$
\begin{aligned}
\tan x & =\frac{\sin x}{\cos x} & \cot x=\frac{\cos x}{\sin x} & \csc x=\frac{1}{\sin x}
\end{aligned} \sec x=\frac{1}{\cos x}
$$

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

$$
\cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2} \quad \sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}
$$

Integration by parts: $\int u d v=u v-\int v d u$
Common trignometric values table

θ in Degrees	θ in Radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	undefined
180	π	0	-1	0
270	$\frac{3 \pi}{2}$	-1	0	undefined
360	2π	0	1	0

