Problem Set 2 - Due Oct 7, 11:59pm

[Your name] and [student ID]
MATB44H3-2019
September 24, 2019

Problem 1. Consider the autonomous equation

$$
\frac{d x}{d t}=-\left(1-\frac{x}{T}\right)\left(1-\frac{x}{K}\right) x
$$

for constants $T, K \in \mathbb{R}$ and $0<T<K$. When $x>0$, this equation can be thought to describe logistic growth with a quorum. We wish to qualitatively analyze the limiting behavior of this system as $t \rightarrow \infty$.

- Plot a graph of $\frac{d x}{d t}$ (vertical) vs. x (horizontal).
- Draw the direction field along the x axis, with arrows pointing the direction the system will evolve.
- The zeros of $\frac{d x}{d t}$ are called its critical points. How many critical points are there? What are they, and which ones are stable?

Solution. Collaborators: Donald Duck and Mickey Mouse
Problem 2. Find the first 3 Picard iterations after $x_{0}(t)$ of the particular solution of each of the following equations:
(i) $\dot{x}=t+x$, where $x(0)=1$
(ii) $\dot{x}=e^{t}+x$, where $x(0)=0$

Solution. Collaborators: Gandalf Greyhame and Bilbo Baggins
Problem 3. Given a function $x: \mathbb{R} \rightarrow \mathbb{R}$, prove that the map

$$
\|x\| \stackrel{\operatorname{def}}{=} \sup _{t \in[0,1]}|x(t)|
$$

is a norm.

Solution. Collaborators: Mark Watney

Problem 4. Recall Newton's method for finding the zeros of a twice continuously differentiable function $f(x)$, given by

$$
x_{n+1}=K\left(x_{n}\right), K(x)=x-\frac{f(x)}{f^{\prime}(x)} .
$$

That is to say, we start from a point x_{0}, and then repeatedly apply $K(x)$ to approximate a nearby 0 of $f(x)$ through the sequence x_{0}, x_{1}, \ldots.

Prove that Newton's method works:

- First show that if $f(\bar{x})=0$ and $f^{\prime}(\bar{x}) \neq 0$, then \bar{x} is a fixed point of K.
- Then show that there is a corresponding closed interval C around \bar{x} such that we can apply the Banach fixed point theorem to prove uniqueness of the solution in that interval.

Solution. Collaborators: No one.

