Problem Set 4 - Due November 18, at 11:59pm

[Your name] and [student ID]
MATB44H3-2019

Problem 1. Let $\dot{x}=A x(t)$, with $x(0)=x_{0}$, where A is a 2 x 2 matrix. Plot the phase portrait for each of the following matrices:
(i) $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & 2\end{array}\right]$
(i) $A=\left[\begin{array}{ll}-2 & 2 \\ -1 & 0\end{array}\right]$
(i) $A=\left[\begin{array}{cc}-1 & 0 \\ -3 & -4\end{array}\right]$
(i) $A=\left[\begin{array}{ll}-3 & 4 \\ -2 & 3\end{array}\right]$

Solution. Collaborators: Donald Duck and Mickey Mouse

Problem 2 (Teschl 3.9). Let $\dot{x}=A x(t)$, with $x(0)=x_{0}$. Solve the systems corresponding to the following matrices:
(i) $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right], \quad x_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(i) $A=\left[\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right], \quad x_{0}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Solution. Collaborators: Gandalf Greyhame and Bilbo Baggins

Problem 3 (Teschl 3.10). Solve

$$
\dot{x}=-y-t, \quad \dot{y}=x+t, \quad x(0)=1, y(0)=0
$$

Solution. Collaborators: Mark Watney

Problem 4 (Teschl 3.14). Let A by a real 2-by-2 matrix. Then the eigenvalues can be expressed in terms of the determinant $D=\operatorname{det}(A)$ and the trace $T=\operatorname{tr}(A)$. In particular, (T, D) can take all possible values in \mathbb{R}^{2} if A ranges over all possible matrices in $\mathbb{R}^{2 \times 2}$. Split the (T, D) plane into regions in which the various cases discussed in lecture / Teschl Section 3.2 occur (source, spiral source, sink, spiral sink, saddle, center).

Solution. Collaborators: No one.

