Let's review linear ODEs:

$$
a_{k}(t) \frac{d^{k}}{d t^{k}} x+\cdots+a_{1}(t) \frac{d x}{d t}+a_{0}(t) x=b(t)
$$

(1) Find k linearly ind. sols to homogeneous $a_{k}(t) \frac{d^{k} x}{d t^{k}}+\cdots+a_{1}(t) \frac{d x}{d t}+a_{0}(t) x=0$
Called $x_{1}(t), x_{2}(t), \ldots, x_{k}(t)$
$x_{h}(t)=\sum_{i=1}^{k} c_{i} x_{i}(t) \quad \forall c_{i} \in \mathbb{R}$ is a sol, to homs.

- If $a_{i}(t) \equiv a_{i}$ constants, then we can use the characteristic eqn

$$
a_{k} \lambda^{k}+\cdots+a_{1} \lambda+a_{0}=0 .
$$

Then $t^{\beta} e^{\lambda t}$ is a so! to hom. eqn, $\beta=\{0, \ldots, m(\lambda)-1\} \quad m(\lambda)=$ multiplicity of λ as a solution fo char. eq.
(2) Find any sol. $x_{p}(t)$ to inhog $e q$ n.

- Method of undetermined coeff.
- Variation of parameters
(3) Gen so! $x(t)=x_{h}(t)+x_{p}(t)$ by Principle of Superposition

Linear difference equations

$$
a_{k}(t)_{x}(t+k)+\cdots+a_{1}(t)_{x}(t+1)+a_{0}(t) x(t)=b(t)
$$

(1) Find k lin. ind. sol, to homogeneous $a_{k}(t) \times(t+k)+\cdots+a_{1}(t) x(t+1)+a_{0}(t) \times(t)=0$ called $x_{1}, x_{2}, \ldots, x_{n}$.
$x_{h}=\sum_{i=1}^{k} c_{i} x_{i} \quad \forall c_{i} \in \mathbb{R}$ is a so! to home. eq.

- If $a_{i}(t) \equiv a_{i}$ constants, then we can use the characteristic eqn

$$
a_{k} \lambda^{k}+\cdots+a_{1} \lambda+a_{0}=0 .
$$

Then $t^{\beta} \lambda^{t}$ is a sol. to the home. eqn, $\beta=\{0, \ldots, m(\lambda)-1\} \quad m(\lambda)=$ multiplicity of λ as a solution to char. eqn.
(2) Find any sol x_{p} to inhog eqn

- Method of undetermined coeff.
- Variation of parameters
(3) Gen sol $x=x_{h}+x_{p}$ by Principle of Superposition

Def. 1.7 The zeros $\lambda_{1}, \ldots, \lambda_{k}$ of the char $e q^{n} a_{k} \lambda^{k}+\cdots+a_{1} \lambda+a_{0}=0$ are often called eigenvalues. If for sone i and for all j,
$\left|\lambda_{i}\right| \geq\left|\lambda_{j}\right|$, then λ_{i} is a dominant eigenvalue
or, $\left|\lambda_{i}\right|>\left|\lambda_{j}\right|$, then λ_{i} is the strictly dom. eigenvalue.
Asymptotically, the behavior of a typical solution is controlled by the dominant eigenvalue, eng. if λ_{i} is a dominant eigenvalue,
dominant eigenvalue, eeg. If λ_{i} is a dominant eigenvalue, and $\left|\lambda_{i}\right|<1$, then solutions converge to 0 .

