Let's review linear ODEs:

$$
\begin{aligned}
& a_{k}(t) \frac{d^{k}}{d t^{k}} x+\cdots+a_{1}(t) \frac{d x}{d t}+a_{0}(t) x=b(t) \\
& a_{k}(t) \frac{d^{k}}{d t^{k}} x(t)+\cdots+a_{1}(t) \frac{d x(t)}{d t}+a_{0}(t) x(t)=b(t)
\end{aligned}
$$

(1) Find k linearly ind sols to homogeneous $a_{k}(t) \frac{d^{k} x}{d t^{k}}+\cdots+a_{1}(t) \frac{d x}{d t}+a_{0}(t)_{x}=0$
called $x_{1}(t), x_{2}(t), \ldots, x_{k}(t)$
$x_{1}+x_{2} \quad\left(x_{1}\right.$ and x_{2} ane sols)

$$
\Leftrightarrow\left(\begin{array}{l}
a_{k}(t) \frac{d^{h}}{d t^{k}}\left(x_{1}+x_{2}\right)+\cdots a_{a_{1}}(t) \frac{d}{d t}\left(x_{1}+x_{2}\right) t_{a_{0}}(t)\left(x_{1}+x_{2}\right)=0 \\
\left(a_{k}(t) \frac{d^{k}}{d t^{k}} x_{1}+\cdots+a_{1}(t) \frac{d}{d t} x_{1}+a_{0}(t) x_{1}\right) \\
+\left(a_{k}(t) \frac{d}{d t^{k}} x^{k}+\cdots+a_{1}(t) \frac{d}{d t} x_{2}+a_{0}(t) x_{2}\right)=0 \\
\downarrow \\
x_{h}(t)=\sum_{i=1}^{k} c_{i} x_{i}(t) \quad \forall c_{i} \in \mathbb{R} \text { in a sol, to home. }
\end{array}\right) .
$$

- If $a_{i}(t) \equiv a_{i}$ constants, then we can use the characteristic eqn

$$
a_{k} \lambda^{k}+\cdots+a_{1} \lambda+a_{0}=0 .
$$

Then $t^{\beta} e^{\lambda t}$ is a sol to home. eqn,
$\beta=\{0, \ldots, m(\lambda)-1\} \quad m(\lambda)=$ multiplicity of λ as a solution fo char. $e_{q n}$.

$$
\begin{aligned}
& a_{k} D^{k} x+\cdots+a_{1} D x+a_{0} x=0 \\
& \left(a_{k} D^{k}+\cdots+a_{1} D+a_{0}\right) x=0
\end{aligned}
$$

Suppose λ is a root of multiplicity $n(\lambda)$

$$
\Rightarrow(\text { una }) \underbrace{(D-\lambda)^{m(\lambda)} x=0}_{\text {Want this to be }}=0
$$

linear difference equations

$$
\begin{aligned}
& a_{k}(t) x(t+k)+\cdots+a_{1}(t)_{x}(t+1)+a_{0}(t) x(t)=b(t) \\
& a_{k}(t) x_{t+k}+\cdots+a_{1}(t) x_{t+1}+a_{0}(t) x_{t}=b_{t}
\end{aligned}
$$

(1) Find k lin. ind. sol, to homogeneous

$$
a_{k}(t)_{x}(t+k)+\cdots+a_{1}(t) \times(t+1)+a_{0}(t) \times(t)=0
$$

$$
\text { called } x_{1}, x_{2}, \ldots, x_{n} \text {. }
$$

$$
\begin{aligned}
& a_{k}(t) c x_{1}(t+k)+\cdots+a_{1}(t) c x_{1}(t+1)+a_{0}(t) c x_{1}(t) \\
&= c\left(a_{k}(t) x_{1}(t+k)+\cdots+a_{1}(t) x_{1}(t+1)+a_{0}(t) x_{1}(t)\right) \\
&=0
\end{aligned}
$$

$x_{h}=\sum_{i=1}^{k} c_{i} x_{i} \quad \forall c_{i} \in \mathbb{R}$ is a so! to how. eqn.
a If $a_{i}(t) \equiv a_{i}$ constants, then we can use the characteristic eqn

$$
a_{k} \lambda^{k}+\cdots+a_{1} \lambda+a_{0}=0
$$

Then $t^{\beta} \lambda^{t}$ is a sol to the home. eqn, $\beta=\{0, \ldots, m(\lambda)-1\} \quad m(\lambda)=$ multiplicity of λ as a solution to char. eqn.

Ex. $1.7 x(t+3)+x(t+2)+x(t+1)+x(t)=0$.
Char. eq. $\lambda^{3}+\lambda^{2}+\lambda+1=0$

$$
\begin{aligned}
& (\lambda+1)\left(\lambda^{2}+1\right)=0 \\
\Rightarrow & \lambda=-1, i,-i .
\end{aligned}
$$

ind. sol, $, 1^{t}, i^{t},(-i)^{t}$,

$$
\begin{aligned}
& \text { Want this to } \\
& 1^{m(\lambda)} x=0
\end{aligned}
$$

Exp. Shift The (The 24.56 in
Tenenbaum Pollard)
If $x=u e^{\lambda t}$, then

$$
\begin{aligned}
& \text { If } x=u e, \text { then } \\
& \left.(D-\lambda)^{m(\lambda)} u e^{\lambda t}=e^{\lambda t} D^{m} u\right)
\end{aligned}
$$

Nee! $D^{m(\lambda)} u=0$
$u=c_{n(1)-1} t^{m(\lambda)-1}+c_{m(\lambda)-2} t^{m(\lambda)-2}+\cdots+c_{1} t+c_{0}$
ind. sol. $\underbrace{-1^{t}}, i^{-t},(-i)^{t}$

$$
\begin{aligned}
i & =e^{\frac{\pi}{2} i},-i=e^{-\frac{\pi}{2} i} \\
i t & =e^{\frac{\pi}{2} i t},(-i)^{t}=e^{-\frac{\pi}{2} i t}
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{\pi}{2} i t}=\cos \left(\frac{\pi}{2} t\right)+i \sin \left(\frac{\pi}{2} t\right) \\
& e^{-\frac{\pi i t}{2}}=\cos \left(\frac{\pi}{2} t\right)-i \sin \left(\frac{\pi}{2} t\right)
\end{aligned}
$$

\Rightarrow another t. Inn. M! sol $\cos \left(\frac{\pi}{2} t\right), \sin \left(\frac{\pi}{2} t\right)$

$$
\Rightarrow x_{h}(t)=c_{1}(-1)^{t}+c_{2} \cos \left(\frac{\pi}{2} t\right)+c_{3} \sin \left(\frac{\pi}{2} t\right)
$$

pg. Ib of Allen's textbook, C_{a} 3: Suppose $\lambda_{1,2}=A \pm i B=r(\cos \phi+i \sin \phi)$
where $r=\sqrt{A^{2}+B^{2}}, \phi=\arctan \left(\frac{B}{A}\right)$.

$$
c_{1} r^{t} \cos (t \phi)+c_{2} r^{t} \sin (t \phi)
$$

(2) Find any sol. $x_{p}(t)$ to inhom, eqn.

- Method of undetermined coeff.
- Variation of parameters

$$
x(t+3)+x(t+2)+x(t+1)+x(t)=4 t
$$

Guess $x_{p}=k_{1} t+k_{2}$. Plug it i_{n} :

$$
k_{1}(t+3)+k_{2}+k_{1}(t+2)+k_{2}+k_{1}(t+1)+k_{2}+k_{1} t+k_{2}=4 t
$$

$$
\begin{aligned}
& \Rightarrow 4 k_{1} t+6 k_{1}+4 k_{2}=4 t \\
& 4 k_{1} t=4 t \quad 6 k_{1}+4 k_{2}=0 \\
& \Rightarrow k_{1}=1 . \quad \Rightarrow k_{2}=-\frac{3}{2} \\
& x_{p}=t-\frac{3}{2}
\end{aligned}
$$

(3) Gen so! $x(t)=x_{h}(t)+x_{p}(t)$ by Principle of Superposition
(2) Find any sol x_{p} to inhom. eqn

- Method of undetermined coeff.
- Variation of parameters

Principle of Superposition
Principle of Superposition

$$
x=x_{n}+x_{p}=c_{1}(-1)^{t}+c_{2} \cos \left(\frac{\pi}{2} t\right)+c_{3} \sin \left(\frac{\pi}{2} t\right)+t-\frac{3}{2} .
$$

Def. 1.7 The zeros $\lambda_{1}, \ldots, \lambda_{k}$ of the char $e \sigma^{n} a_{k} \lambda^{k}+\ldots+a_{1}, \lambda+a_{0}=0$ are often called eigenvalues. If for sone i and for all j,
$\left|\lambda_{i}\right| \geq\left|\lambda_{j}\right|$, then λ_{i} is a dominant eigenvalue
or, $\left|\lambda_{i}\right|>\left|\lambda_{j}\right|$, then λ_{i} is the strictly dom. eigenvalue.
Asymptotically, the behavior of a typical solution is control ed by the dominant eigenvalue, eeg. if λ_{i} is a dominant eigenvalue, and $\left|\lambda_{i}\right|<1$, then solutions converge to 0 .

